Skip to main content

Advertisement

Log in

A soil biotechnology system for wastewater treatment: technical, hygiene, environmental LCA and economic aspects

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Soil biotechnology (SBT) is a green engineering approach for wastewater treatment and recycling. Five SBT units located in the Mumbai region were under consideration of which holistic assessment of two SBT plants was carried out considering its technical, environmental and economic aspects and was compared with published research of other three. LCA has been done to evaluate the environmental impacts of construction and operation phase of SBT. Chemical oxygen demand (COD) and biochemical oxygen demand (BOD) removal of more than 90% can be achieved using this technology. Also, the nutrient removal proficiency (nitrate, nitrite, ammoniacal nitrogen, TKN, total nitrogen and phosphates) of this technique is good. On the other hand, SBT has low annual operation and maintenance cost, comparable to land-based systems and lower than conventional or advanced technologies. From the life cycle impact assessment, the main contributors for overall impact from the plant were identified as electricity consumption, discharges of COD, P-PO4 3− and N-NH4 + and disposal of sludge. The construction phase was found to have significantly more impact than the operation phase of the plant. This study suggests plant I is not relatively as efficient enough regarding sanitation. SBT provides several benefits over other conventional technologies for wastewater treatment. It is based on a bio-conversion process and is practically maintenance free. It does not produce any odorous bio-sludge and consumes the least energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amores MJ, Meneses M, Pasqualino J, Anton A, Castells F (2013) Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. J Clean Prod 43:84–92

    Article  Google Scholar 

  • Apha A (2005) WEF, 2005. Standard methods for the examination of water and wastewater 21:258–259

    Google Scholar 

  • Bahgat M, Dewedar A, Zayed A (1999) Sand-filters used for wastewater treatment: buildup and distribution of microorganisms. Water Res 33(8):1949–1955

    Article  CAS  Google Scholar 

  • Benetto E, Nguyen D, Lohmann T, Schmitt B, Schosseler P (2009) Life cycle assessment of ecological sanitation system for small-scale wastewater treatment. Sci Total Environ 407(5):1506–1516

    Article  CAS  Google Scholar 

  • Bester K, Schäfer D (2009) Activated soil filters (bio filters) for the elimination of xenobiotics (micro-pollutants) from storm-and waste waters. Water Res 43(10):2639–2646

    Article  CAS  Google Scholar 

  • Avantika Bhaskar and N. Muthu Karthick (2015) Riparian forests for healthy rivers, Conservation India. Available at: http://www.conservationindia.org/articles/riparian-forests-for-healthy-rivers

  • Brix H (1999) How “green” are aquaculture, constructed wetlands and conventional wastewater treatment systems? Water Science & Technology 40(3):45–50

    Article  CAS  Google Scholar 

  • Central Pollution Control Board (CPCB) (2013) Performance evaluation of sewage treatment plants under NRCD, Ministry of Environment and Forest. Available at: http://cpcb.nic.in/upload/NewItems/NewItem_195_STP_REPORT.pdf

  • Chen S, Chen B (2013) Net energy production and emissions mitigation of domestic wastewater treatment system: a comparison of different biogas–sludge use alternatives. Bioresour Technol 144:296–303

    Article  CAS  Google Scholar 

  • Coats ER, Watkins DL, Kranenburg D (2011) A comparative environmental life-cycle analysis for removing phosphorus from wastewater: biological versus physical/chemical processes. Water Environ Res 83:750–760

    CAS  Google Scholar 

  • Corcoran, E., C. Nellemann, E. Baker, R. Bos, D. Osborn, H. Savelli (eds) 2010 Sick Water? The central role of wastewater management in sustainable development. A rapid response assessment. United Nations Environment Programme, UN-HABITAT, GRID Arendal. www.grida.no ISBN: 978–82–7701-075-5 Printed by BirkelandTrykkeri AS, Norway

  • Dixon A, Simon M, Burkitt T (2003) Assessing the environmental impact of two options for small-scale wastewater treatment: comparing a reedbed and an aerated biological filter using a life cycle approach. Ecol Eng 20(4):297–308. doi:10.1016/S0925-8574(03)00007-7

    Article  Google Scholar 

  • Doka G (2009) Life cycle inventories of waste treatment services. Ecoinvent report No. 13: Swiss Centre for Life Cycle Inventories, Dubendorf, Switzerland

  • Emmerson RHC, Morse GK, Lester JN, Edge DR (1995) The life-cycle analysis of small-scale sewage-treatment processes. JCIWEM 9:317–325

    CAS  Google Scholar 

  • Foley J, De Haas D, Hartley K, Lant P (2010) Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res 44(5):1654–1666. doi:10.1016/j.watres.2009.11.031

    Article  CAS  Google Scholar 

  • Gallego A, Hospido A, Moreira MT, Feijoo G (2008) Environmental performance of wastewater treatment plants for small populations. Resour Conserv Recycl 52(6):931–940. doi:10.1016/j.resconrec.2008.02.001

    Article  Google Scholar 

  • Hao R, Li S, Li J, Meng C (2013) Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: operating performance and bacterial community. Bioresour Technol 143:178–186

    Article  CAS  Google Scholar 

  • Heistad A, Paruch AM, Vråle L, Adam K, Jenssen PD (2006) A high–performance compact filter system treating domestic wastewater. Ecol Eng 28(4):374–379

    Article  Google Scholar 

  • Hench KR, Bissonnette GK, Sexstone AJ, Coleman JG, Garbutt K, Skousen JG (2003) Fate of physical, chemical, and microbial contaminants in domestic wastewater following treatment by small constructed wetlands. Water Res 37(4):921–927

    Article  CAS  Google Scholar 

  • Hospido A, Moreira MT, Fernández-Couto M, Feijoo G (2004) Environmental performance of a municipal wastewater treatment plant. Int J LCA 9(4):261–271

    Article  Google Scholar 

  • Hospido A, Moreira MT, Feijoo G (2008) A comparison of municipal wastewater treatment plants for big centres of population in Galicia (Spain). Int J Life Cycle Assess 13:57–64

    Article  CAS  Google Scholar 

  • Hospido A, Sanchez I, Rodriguez-Garcia G, Iglesias A, Buntner D, Reif R, Moreira MT et al (2012) Are all membrane reactors equal from an environmental point of view? Desalination 285:263–270. doi:10.1016/j.desal.2011.10.011

    Article  CAS  Google Scholar 

  • International Organization for Standardization (ISO) (2006a) Environmental management. Life cycle assessment. Principle and framework. ISO14040:2006. International Organization for Standardisation, Geneva, CH

  • International Organization for Standardization (ISO) (2006b) Environmental management. Life cycle assessment. Requirements and guidelines. ISO 14044:2006. International organization for standardisation (ISO), Geneva, CH

  • Jenssen PD, Krogstad T, Paruch AM, Mæhlum T, Adam K, Arias CA, Yli-Halla M (2010) Filter bed systems treating domestic wastewater in the Nordic countries—performance and reuse of filter media. Ecol Eng 36(12):1651–1659

    Article  Google Scholar 

  • Kadam AM, Oza GH, Nemade PD, Shankar HS (2008a) Pathogen removal from municipal wastewater in constructed soil filter. Ecol Eng 33(1):37–44

  • Kadam A, Oza G, Nemade P, Dutta S, Shankar H (2008b) Municipal wastewater treatment using novel constructed soil filter system. Chemosphere 71(5):975–981

  • Kadam AM, Nemade PD, Oza GH, Shankar HS (2009) Treatment of municipal wastewater using laterite-based constructed soil filter. Ecol Eng 35(7):1051–1061

    Article  Google Scholar 

  • Kalbar, P. P., Karmakar, S., &Asolekar, S. R. (2012). Assessment of wastewater treatment technologies: life cycle approach. Water and Environment Journal, (3), n/a–n/a. doi:10.1111/wej.12006

  • Kalbar PP, Karmakar S, Asolekar SR (2013) Assessment of wastewater treatment technologies: life cycle approach. Water and Environment Journal 27(2):261–268

    Article  CAS  Google Scholar 

  • Kalbar PP, Karmakar S, Asolekar SR (2014) Life cycle-based environmental assessment of municipal wastewater treatment plant in India. Int J Environ Waste Manag 14(1):84–98

    Article  Google Scholar 

  • Khalil, N., Sinha, R., Raghav, A. K., & Mittal, A. K. (2008, March). UASB technology for sewage treatment in India: experience, economic evaluation and its potential in other developing countries. In Twelfth International Water Technology Conference (pp. 1411–1427)

  • Koottatep T, Surinkul N, Polprasert C, Kamal ASM, Koné D, Montangero A et al (2005) Treatment of septage in constructed wetlands in tropical climate: lessons learnt from seven years of operation. Water Sci Technol 51(9):119–126

    CAS  Google Scholar 

  • Kumar C.P. 2003 Fresh water resources: a perspective, International Year of Fresh Water – 2003. Available at: http://www.angelfire.com/bc/nihhrrc/documents/fresh.html

  • Leverenz HL, Tchobanoglous G, Darby JL (2009) Clogging in intermittently dosed sand filters used for wastewater treatment. Water Res 43(3):695–705

    Article  CAS  Google Scholar 

  • Li Y, Luo X, Huang X, Wang D, Zhang W (2013) Life cycle assessment of a municipal wastewater treatment plant: a case study in Suzhou, China. J Clean Prod 57:221–227

    Article  Google Scholar 

  • Llorens M, Pérez-Marin AB, Aguilar MI, Sáez J, Ortuño JF, Meseguer VF (2011) Nitrogen transformation in two subsurface infiltration systems at pilot scale.Ecological. Engineering 37(5):736–743

    Google Scholar 

  • Lopsik K (2013) Life cycle assessment of small-scale constructed wetland and extended aeration activated sludge wastewater treatment system. Int J Environ Sci Technol 10(6):1295–1308

    Article  CAS  Google Scholar 

  • Luanmanee S, Attanandana T, Masunaga T, Wakatsuki T (2001) The efficiency of a multi-soil-layering system on domestic wastewater treatment during the ninth and tenth years of operation. Ecol Eng 18(2):185–199

    Article  Google Scholar 

  • Luo W, Yang C, He H, Zeng G, Yan S, Cheng Y (2014) Novel two-stage vertical flow biofilter system for efficient treatment of decentralized domestic wastewater. Ecol Eng 64:415–423

    Article  Google Scholar 

  • Machado AP, Urbano L, Brito AG, Janknecht P, Salas JJ, Nogueira R (2007) Life cycle assessment of wastewater treatment options for small and decentralized communities. Water Science & Technology 56(3):15. doi:10.2166/wst.2007.497

    Article  CAS  Google Scholar 

  • McDonald RI, Weber K, Padowski J, Flörke M, Schneider C, Green PA, Gleeson T, Eckman S, Lehner B, Balk D, Boucher T, Grill G, Montgomery M (2014) Water on an urban planet: urbanization and the reach of urban water infrastructure. Glob Environ Chang 27:96–105. doi:10.1016/j.gloenvcha.2014.04.022

    Article  Google Scholar 

  • Mehta P (2012) Impending water crisis in India and comparing clean water standards among developing and developed nations. Archives of Applied Science Research 4(1):497–507 ISSN 0975-508XAvailable at: http://environmentportal.in/files/file/Impending%20water%20crisis%20in%20India.pdf

    Google Scholar 

  • Memon FA, Zheng Z, Butler D, Shirley-Smith C, Lui S, Makropoulos C, Avery L (2007) Life cycle impact assessment of greywater recycling technologies for new developments. Environ Monit Assess 129(1–3):27–35

    Article  CAS  Google Scholar 

  • Mulkerrins D, Dobson ADW, Colleran E (2004) Parameters affecting biological phosphate removal from wastewaters. Environ Int 30:249–259

    Article  CAS  Google Scholar 

  • Munoz I, Rodriguez A, Rosal R, Fernandez-Alba AR (2009) Life cycle assessment of urban wastewater reuse with ozonation as tertiary treatment: a focus on toxicity-related impacts. Sci Total Environ 407(4):1245–1256

    Article  CAS  Google Scholar 

  • Nemade PD, Kadam AM, Shankar HS (2009a) Wastewater renovation using constructed soil filter (CSF): a novel approach. J Hazard Mater 170(2):657–665

    Article  CAS  Google Scholar 

  • Nemade PD, Kadam AM, Shankar HS (2009b) Removal of iron, arsenic and coliform bacteria from water by novel constructed soil filter system. Ecol Eng 35(8):1152–1157

    Article  Google Scholar 

  • Niero M, Pizzol M, Bruun HG, Thomsen M (2014) Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. J Clean Prod 68(1):25–35

  • Njau KN, Minja RJ, Katima JH (2003) Pumice soil: a potential wetland substrate for treatment of domestic wastewater. Water Sci Technol 48:85–92

    CAS  Google Scholar 

  • Nogueira R, Brito AG, Machado AP, Janknecht P, Salas JJ, Vera L, Martel G (2009) Economic and environmental assessment of small and decentralized wastewater treatment systems. Desalin Water Treat 4(1–3):16–21. doi:10.5004/dwt.2009.349

    Article  CAS  Google Scholar 

  • Pan T, Zhu XD, Ye YP (2011) Estimate of life-cycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional wastewater treatment plants: a case study in China. Ecol Eng 37(2):248–254

    Article  Google Scholar 

  • Park WH (2009) Integrated constructed wetland systems employing alum sludge and oyster shells as filter media for P removal. Ecol Eng 35(8):1275–1282

  • Pasqualino JC, Meneses M, Abella M, Castells F (2009) LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant. Environmental science & technology 43(9):3300–3307

    Article  CAS  Google Scholar 

  • Pasqualino JC, Meneses M, Castells F (2011) Life cycle assessment of urban wastewater reclamation and reuse alternatives. J Ind Ecol 15(1):49–63. doi:10.1111/j.1530-9290.2010.00293.x

    Article  CAS  Google Scholar 

  • Rodriguez-Garcia G, Molinos-Senante M, Hospido A, Hernández-Sancho F, Moreira MT, Feijoo G (2011) Environmental and economic profile of six typologies of wastewater treatment plants. Water Res 45(18):5997–6010. doi:10.1016/j.watres.2011.08.053

    Article  CAS  Google Scholar 

  • Rodriguez-Garcia G, Frison N, Vázquez-Padín JR, Hospido A, Garrido JM, Fatone F et al (2014) Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant. Sci Total Environ 490:871–879

    Article  CAS  Google Scholar 

  • Roeleveld PJ, Klapwijk A, Eggels PG, Rulkens WH, Van Starkenburg W (1997) Sustainability of municipal wastewater treatment. Water Science & Technology 35(10):221–228

    Article  Google Scholar 

  • Roushdi M, El-Hawary A, Mahgoub M (2012) Environmental improvement of Alexandria’s wastewater treatment plants using life cycle assessment approach. GLOBAL NEST JOURNAL 14(4):450–459

    Google Scholar 

  • Roux P, Boutin C, Risch E, Heduit A (2010) Life cycle environmental assessment (LCA) of sanitation systems including sewerage: case of vertical flow constructed wetlands versus activated sludge. In: 12th IWA International Conference on Wetland Systems for Water Pollution Control, vol. 2

  • Sato N, Okubo T, Onodera T, Agrawal LK, Ohashi A, Harada H (2007) Economic evaluation of sewage treatment processes in India. J Environ Manag 84(4):447–460

    Article  Google Scholar 

  • Sato K, Iwashima N, Wakatsuki T, Masunaga T (2011) Quantitative evaluation of treatment processes and mechanisms of organic matter, phosphorus, and nitrogen removal in a multi-soil-layering system. Soil Science and Plant Nutrition 57(3):475–486

    Article  Google Scholar 

  • Tangsubkul N, Beavis P, Moore SJ, Lundie S, Waite TD (2005) Life cycle assessment of water recycling technology. Water Resour Manag 19(5):521–537

    Article  Google Scholar 

  • Tietz A, Langergraber G, Watzinger A, Haberl R, Kirschner AK (2008) Bacterial carbon utilization in vertical subsurface flow constructed wetlands. Water Res 42(6):1622–1634

    Article  CAS  Google Scholar 

  • Torrens A, Molle P, Boutin C, Salgot M (2009) Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent. Water Res 43(7):1851–1858

    Article  CAS  Google Scholar 

  • Wakatsuki T, Esumi H, Omura S (1993) High performance and N & P-removable on-site domestic waste water treatment system by multi-soil-layering method. Water Sci Technol 27(1):31–40

    CAS  Google Scholar 

  • Wang YY, Peng YZ, Stephenson T (2009) Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process. Bioresour Technol 100(14):3506–3512

    Article  CAS  Google Scholar 

  • Wang DB, Zhang ZY, Li XM, Zheng W, Yang Q, Ding Y, Zeng GM (2010) A full-scale treatment of freeway toll-gate domestic sewage using ecology filter integrated constructed rapid infiltration. Ecol Eng 36(6):827–831

    Article  Google Scholar 

  • Wang L, Zheng Z, Luo X, Zhang J (2011) Performance and mechanisms of a microbial-earthworm ecofilter for removing organic matter and nitrogen from synthetic domestic wastewater. J Hazard Mater 195:245–253

    Article  CAS  Google Scholar 

  • WHO/FAO (2006)

  • Yıldırım M, Topkaya B (2012) Assessing environmental impacts of wastewater treatment alternatives for small-scale communities. CLEAN - Soil, Air, Water 40(2):171–178. doi:10.1002/clen.201000423

    Article  Google Scholar 

  • Yuan H, Nie J, Zhu N, Miao C, Lu N (2013) Effect of temperature on the wastewater treatment of a novel anti-clogging soil infiltration system. Ecol Eng 57:375–379

    Article  Google Scholar 

  • Zhang J, Huang X, Shao CF, Liu CX, Shi HC, Hu HY, Liu ZQ (2004) Influence of packing media on nitrogen removal in a subsurface infiltration system. J Environ Sci China 16:153–156

    Google Scholar 

  • Zhang Y, Geißen SU, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8):1151–1161

    Article  CAS  Google Scholar 

  • Zhang QH, Wang XC, Xiong JQ, Chen R, Cao B (2010) Application of life cycle assessment for an evaluation of wastewater treatment and reuse project—case study of Xi’an, China. Bioresour Technol 101(5):1421–1425

    Article  CAS  Google Scholar 

  • Zhang Y, Cheng Y, Yang C, Luo W, Zeng G, Lu L (2015) Performance of system consisting of vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of rural wastewater. Bioresour Technol 193:424–432

    Article  CAS  Google Scholar 

  • Zhao, C., Zhang, Y., Liang, K., & Li, J. (2015) Environmental impact analysis of wastewater treatment process based on life cycle assessment

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheetal Jaisingh Kamble.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, S.J., Chakravarthy, Y., Singh, A. et al. A soil biotechnology system for wastewater treatment: technical, hygiene, environmental LCA and economic aspects. Environ Sci Pollut Res 24, 13315–13334 (2017). https://doi.org/10.1007/s11356-017-8819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8819-6

Keywords

Navigation