Skip to main content
Log in

p53 induction and cell viability modulation by genotoxic individual chemicals and mixtures

  • Effect-related evaluation of anthropogenic trace substances, -concepts for genotoxicity, neurotoxicity and, endocrine effects
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The binding of the p53 tumor suppression protein to DNA response elements after genotoxic stress can be quantified by cell-based reporter gene assays as a DNA damage endpoint. Currently, bioassay evaluation of environmental samples requires further knowledge on p53 induction by chemical mixtures and on cytotoxicity interference with p53 induction analysis for proper interpretation of results. We investigated the effects of genotoxic pharmaceuticals (actinomycin D, cyclophosphamide) and nitroaromatic compounds (4-nitroquinoline 1-oxide, 3-nitrobenzanthrone) on p53 induction and cell viability using a reporter gene and a colorimetric assay, respectively. Individual exposures were conducted in the absence or presence of metabolic activation system, while binary and tertiary mixtures were tested in its absence only. Cell viability reduction tended to present direct correlation with p53 induction, and induction peaks occurred mainly at chemical concentrations causing cell viability below 80%. Mixtures presented in general good agreement between predicted and measured p53 induction factors at lower concentrations, while higher chemical concentrations gave lower values than expected. Cytotoxicity evaluation supported the selection of concentration ranges for the p53 assay and the interpretation of its results. The often used 80% viability threshold as a basis to select the maximum test concentration for cell-based assays was not adequate for p53 induction assessment. Instead, concentrations causing up to 50% cell viability reduction should be evaluated in order to identify the lowest observed effect concentration and peak values following meaningful p53 induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arlt VM, Cole KJ, Phillips DH (2004) Activation of 3-nitrobenzanthrone and its metabolites to DNA-damaging species in human B lymphoblastoid MCL-5 cells. Mutagenesis 19:149–156

    Article  CAS  Google Scholar 

  • Asiri YA (2010) Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxidative Med Cell Longev 3:308–316

    Article  Google Scholar 

  • Beckerman R, Prives C (2010) Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2(8):a000935

  • Bensaad K, Rouillard D, Soussi T (2001) Regulation of the cell cycle by p53 after DNA damage in an amphibian cell line. Oncogene 20:3766–3775

    Article  CAS  Google Scholar 

  • Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

  • Bhaskaran A, May D, Rand-Weaver M, Tyler CR (1999) Fish p53 as a possible biomarker for genotoxins in the aquatic environment. Environ Mol Mutagen 33:177–184

    Article  CAS  Google Scholar 

  • Briat A, Vassaux G (2008) A new transgenic mouse line to image chemically induced p53 activation in vivo. Cancer Sci 99:683–688

    Article  CAS  Google Scholar 

  • Brinkmann M, Blenkle H, Salowsky H, Bluhm K, Schiwy S, Tiehm A et al (2014) Genotoxicity of heterocyclic PAHs in the micronucleus assay with the fish liver cell line RTL-W1. PLoS One 9:e85692

    Article  Google Scholar 

  • Brüsehafer K, Manshian BB, Doherty AT, Zaïr ZM, Johnson GE, Doak SH et al (2016) The clastogenicity of 4NQO is cell-type dependent and linked to cytotoxicity, length of exposure and p53 proficiency. Mutagenesis 31:171–180

    Article  Google Scholar 

  • Česen M, Kosjek T, Busetti F, Kompare B, Heath E (2016) Human metabolites and transformation products of cyclophosphamide and ifosfamide: analysis, occurrence and formation during abiotic treatments. Environ Sci Pollut Res 23:11209–11223

    Article  Google Scholar 

  • Chen C-S, Ho D-R, Chen F-Y, Chen C-R, Ke Y-D, Su J-GJ (2014) AKT mediates actinomycin D-induced p53 expression. Oncotarget 5:693–703

    Google Scholar 

  • Choong ML, Yang H, Lee MA, Lane DP (2009) Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. Cell Cycle 8:2810–2818

    Article  CAS  Google Scholar 

  • Clewell RA, Sun B, Adeleye Y, Carmichael P, Efremenko A, McMullen PD et al (2014) Profiling dose-dependent activation of p53-mediated signaling pathways by chemicals with distinct mechanisms of DNA damage. Toxicol Sci 142:56–73

    Article  CAS  Google Scholar 

  • Duerksen-Hughes PJ, Yang J, Ozcan O (1999) p53 induction as a genotoxic test for twenty-five chemicals undergoing in vivo carcinogenicity testing. Environ Health Perspect 107:805–812

    Article  CAS  Google Scholar 

  • Ferre-Aracil J, Valcárcel Y, Negreira N, de Alda ML, Barceló D, Cardona SC et al (2016) Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process. Sci Total Environ 556:70–79

    Article  CAS  Google Scholar 

  • Garner E, Raj K (2008) Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death. Cell Cycle 7:277–282

    Article  CAS  Google Scholar 

  • Groten JP, Feron VJ, Suhnel J (2001) Toxicology of simple and complex mixtures. Trends Pharmacol Sci 22:316–322

    Article  CAS  Google Scholar 

  • Han H, Pan Q, Zhang B, Li J, Deng X, Lian Z et al (2007) 4-NQO induces apoptosis via p53-dependent mitochondrial signaling pathway. Toxicology 230:151–163

    Article  CAS  Google Scholar 

  • Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908

    Article  CAS  Google Scholar 

  • IARC. IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Diesel and gasoline engine exhausts and some nitroarenes. Lyon (FR): International Agency for Research on Cancer (2014) (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 105.) 3-NITROBENZANTHRONE. Available from: http://www.ncbi.nlm.nih.gov/books/NBK294272/. 2014

  • Imazawa T, Nishikawa A, Toyoda K, Furukawa F, Mitsui M, Hirose M (2003) Sequential alteration of apoptosis, p53 expression, and cell proliferation in the rat pancreas treated with 4-hydroxyaminoquinoline 1-oxide. Toxicol Pathol 31:625–631

    Article  CAS  Google Scholar 

  • Ivashkevich A, Redon CE, Nakamura AJ, Martin RF, Martin OA (2012) Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett 327:123–133

    Article  CAS  Google Scholar 

  • Jin L, Gaus C, Escher BI (2015) Adaptive stress response pathways induced by environmental mixtures of bioaccumulative chemicals in dugongs. Environ Sci Technol 49:6963–6973

    Article  CAS  Google Scholar 

  • Kester HA, Sonneveld E, van der Saag PT, van der Burg B (2003) Prolonged progestin treatment induces the promoter of CDK inhibitor p21Cip1, Waf1 through activation of p53 in human breast and endometrial tumor cells. Exp Cell Res 284:262–271

    Article  Google Scholar 

  • Knight AW, Little S, Houck K, Dix D, Judson R, Richard A et al (2009) Evaluation of high-throughput genotoxicity assays used in profiling the US EPA ToxCast chemicals. Regul Toxicol Pharmacol 55:188–199

    Article  CAS  Google Scholar 

  • Kumari R, Kohli S, Das S (2014) p53 regulation upon genotoxic stress: intricacies and complexities. Mol Cell Oncol 1:e969653

    Article  Google Scholar 

  • Kuo LJ, Yang LX (2008) Gamma-H2AX—a novel biomarker for DNA double-strand breaks. In Vivo 22:305–309

    CAS  Google Scholar 

  • Landvik NE, Arlt VM, Nagy E, Solhaug A, Tekpli X, Schmeiser HH et al (2010) 3-Nitrobenzanthrone and 3-aminobenzanthrone induce DNA damage and cell signalling in Hepa1c1c7 cells. Mutat Res Fundam Mol Mech Mutagen 684:11–23

    Article  CAS  Google Scholar 

  • Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13:941–950

    Article  CAS  Google Scholar 

  • Lutzker SG, Mathew R, Taller DR (2001) A p53 dose-response relationship for sensitivity to DNA damage in isogenic teratocarcinoma cells. Oncogene 20:2982–2986

    Article  CAS  Google Scholar 

  • Mischo HE, Hemmerich P, Grosse F, Zhang S (2005) Actinomycin D induces histone γ-H2AX foci and complex formation of γ-H2AX with Ku70 and nuclear DNA helicase II. J Biol Chem 280:9586–9594

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • Nagy E, Adachi S, Takamura-Enya T, Zeisig M, Möller L (2007) DNA adduct formation and oxidative stress from the carcinogenic urban air pollutant 3-nitrobenzanthrone and its isomer 2-nitrobenzanthrone, in vitro and in vivo. Mutagenesis 22:135–145

    Article  CAS  Google Scholar 

  • Øya E, Øvrevik J, Arlt VM, Nagy E, Phillips DH, Holme JA (2011) DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis. Mutagenesis 26(6):697–708

  • Rao B, van Leeuwen IMM, Higgins M, Campbell J, Thompson AM, Lane DP et al (2010) Evaluation of an actinomycin D/VX-680 aurora kinase inhibitor combination in p53-based cyclotherapy. Oncotarget 1:639–650

    Google Scholar 

  • Rutkowski R, Hofmann K, Gartner A (2010) Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol 2:a001131

    Article  Google Scholar 

  • Salazar AM, Ostrosky-Wegman P, Menendez D, Miranda E, Garcia-Carranca A, Rojas E (1997) Induction of p53 protein expression by sodium arsenite. Mutat Res Fundam Mol Mech Mutagen 381:259–265

    Article  CAS  Google Scholar 

  • Salazar AM, Sordo M, Ostrosky-Wegman P (2009) Relationship between micronuclei formation and p53 induction. Mutat Res Genet Toxicol Environ Mutagen 672:124–128

    Article  CAS  Google Scholar 

  • SCHER, SCCS, SCENIHR (2012) Opinion on the toxicity and assessment of chemical mixtures. European Commission, Brussels

    Google Scholar 

  • Sohn TA, Bansal R, Su GH, Murphy KM, Kern SE (2002) High-throughput measurement of the Tp53 response to anticancer drugs and random compounds using a stably integrated Tp53-responsive luciferase reporter. Carcinogenesis 23:949–958

    Article  CAS  Google Scholar 

  • Steger-Hartmann T, Kümmerer K, Hartmann A (1997) Biological degradation of cyclophosphamide and its occurrence in sewage water. Ecotoxicol Environ Saf 36:174–179

    Article  CAS  Google Scholar 

  • Storer NY, Zon LI (2010) Zebrafish models of p53 functions. Cold Spring Harb Perspect Biol 2:a001123

    Article  Google Scholar 

  • Strauss G, Westhoff MA, Fischer-Posovszky P, Fulda S, Schanbacher M, Eckhoff SM et al (2007) 4-Hydroperoxy-cyclophosphamide mediates caspase-independent T-cell apoptosis involving oxidative stress-induced nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG. Cell Death Differ 15:332–343

    Article  Google Scholar 

  • van der Linden SC, von Bergh ARM, van Vught-Lussenburg BMA, Jonker LRA, Teunis M, Krul CAM et al (2014) Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress. Mutat Res Genet Toxicol Environ Mutagen 760:23–32

    Article  Google Scholar 

  • van Leeuwen IM, Higgins M, Campbell J, Brown CJ, McCarthy AR, Pirrie L et al (2011) Mechanism-specific signatures for small-molecule p53 activators. Cell Cycle 10:1590–1598

    Article  Google Scholar 

  • Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A et al (2015) The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environ Sci Eur 27:1–11

    Article  CAS  Google Scholar 

  • Xiao H, Kuckelkorn J, Nüßer LK, Floehr T, Hennig MP, Roß-Nickoll M et al (2016) The metabolite 3,4,3′,4′-tetrachloroazobenzene (TCAB) exerts a higher ecotoxicity than the parent compounds 3,4-dichloroaniline (3,4-DCA) and propanil. Sci Total Environ 551–552:304–316

    Article  Google Scholar 

  • Yang J, Duerksen-Hughes P (1998) A new approach to identifying genotoxic carcinogens: p53 induction as an indicator of genotoxic damage. Carcinogenesis 19:1117–1125

    Article  CAS  Google Scholar 

  • Yeh RYL, Farré MJ, Stalter D, Tang JYM, Molendijk J, Escher BI (2014) Bioanalytical and chemical evaluation of disinfection by-products in swimming pool water. Water Res 59:172–184

    Article  CAS  Google Scholar 

  • Zajkowicz A, Gdowicz-Klosok A, Krzesniak M, Scieglinska D, Rusin M (2015) Actinomycin D and nutlin-3a synergistically promote phosphorylation of p53 on serine 46 in cancer cell lines of different origin. Cell Signal 27:1677–1687

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the RWTH colleague Simone Hotz for the support during the establishment of the cell line and assay in our laboratory. Thanks to BioDetection Systems BV (BDS, Amsterdam, The Netherlands) for supplying the cell line and respective culture and method protocols. Thanks to Promega GmbH, Germany, and to Tecan Group Ltd., Switzerland, for their contribution to this study as a partner of the Students Lab “Fascinating Environment” at Aachen Biology and Biotechnology (ABBt). This study was supported by the EDA-EMERGE ITN project within the EU Seventh Framework Program (FP7-PEOPLE-2011-ITN) under the grant agreement number 290100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Di Paolo.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Paolo, C., Müller, Y., Thalmann, B. et al. p53 induction and cell viability modulation by genotoxic individual chemicals and mixtures. Environ Sci Pollut Res 25, 4012–4022 (2018). https://doi.org/10.1007/s11356-017-8790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8790-2

Keywords

Navigation