Skip to main content

Advertisement

Log in

Analysis of the environmental issues concerning the deployment of an OTEC power plant in Martinique

  • 4th International Symposium on Environmental Biotechnology and Engineering-2014
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ocean thermal energy conversion (OTEC) is a form of power generation, which exploits the temperature difference between warm surface seawater and cold deep seawater. Suitable conditions for OTEC occur in deep warm seas, especially the Caribbean, the Red Sea and parts of the Indo-Pacific Ocean. The continuous power provided by this renewable power source makes a useful contribution to a renewable energy mix because of the intermittence of the other major renewable power sources, i.e. solar or wind power. Industrial-scale OTEC power plants have simply not been built. However, recent innovations and greater political awareness of power transition to renewable energy sources have strengthened the support for such power plants and, after preliminary studies in the Reunion Island (Indian Ocean), the Martinique Island (West Indies) has been selected for the development of the first full-size OTEC power plant in the world, to be a showcase for testing and demonstration. An OTEC plant, even if the energy produced is cheap, calls for high initial capital investment. However, this technology is of interest mainly in tropical areas where funding is limited. The cost of innovations to create an operational OTEC plant has to be amortized, and this technology remains expensive. This paper will discuss the heuristic, technical and socio-economic limits and consequences of deploying an OTEC plant in Martinique to highlight respectively the impact of the OTEC plant on the environment the impact of the environment on the OTEC plant. After defining OTEC, we will describe the different constraints relating to the setting up of the first operational-scale plant worldwide. This includes the investigations performed (reporting declassified data), the political context and the local acceptance of the project. We will then provide an overview of the processes involved in the OTEC plant and discuss the feasibility of future OTEC installations. We will also list the extensive marine investigations required prior to installation and the dangers of setting up OTEC plants in inappropriate locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CNRS:

National Centre for Scientific Research

DCNS:

Shipbuilding, systems and service directorate

IRD:

French institute for the development

Ifremer:

French institute for study and exploitation of the seas

OTEC:

Ocean thermal energy conversion

CTM:

Territorial collectivity of Martinique

HDI:

Human Development Index

References

  • Abarnou A (2013) Contamination chimique du milieu marin : de la mesure à l’évaluation des risques. Ph.D Thesis Brest. 128pp

  • Anderson DR, Bean RM, Gibson CI (1979) Biocide by-products in aquatic environments. Quarterly Progress Report

  • AREC (2012a) http://atlas-caraibe.certic.unicaen.fr/fr/page-30.html In French. Accessed April 30 2016

  • AREC (2012b) http://atlas-caraibe.certic.unicaen.fr/fr/page-28.html In French. Accessed April 30 2016

  • Autorité Environnementale (2015) Avis de l’Autorité Environnementale sur le dossier de demande d’autorisation d’exploiter une installation classée pour la protection de l’environnement (ICPE). 9pp. http://www.martinique.developpement-durable.gouv.fr/IMG/pdf/AvisAE_AKUO-NEMO_Bellefont_140815vs_cle2b42d9.pdf Accessed 9 July 2016

  • Auvray C, Bouchet T, Blouin V (2012a) Etudes météocéaniques et du rejet: modélisation des courants. Energie Thermique des Mers (ETM) Projet de centrale pilote en Martinique. 12/INC/191. 35pp. In French. Confidential

  • Auvray C, Bouchet T, Blouin V (2012b) Etudes météocéaniques et du rejet : modélisation des rejets. Energie Thermique des Mers (ETM) Projet de centrale pilote en Martinique. 12/INC/191. 65pp. In French. Confidential

  • Balmori A (2015) Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Sci Tot Env 518-519:58–60

    Article  CAS  Google Scholar 

  • Berger LR, Berger JA (1986) Countermeasures to microbiofouling in simulated ocean thermal energy conversion heat exchangers with surface and deep ocean waters in Hawaii. Appl Environ Microbiol 51(6):1186–1198

    CAS  Google Scholar 

  • Boye M, Giraud M, Garçon V, Lejart M, Auvray C, Bœuf M, De La Broise D. (2015) Ocean thermal energy conversion, the potential impact on microplankton of bottom water discharge at sub-surface. Association for the Sciences of Limnology & Oceanography, 22–27 February 2015 Granada

  • Brandt AR (2011) Oil depletion and the energy efficiency of oil production: the case of California. Sustain 3(10):1833–1854

    Article  Google Scholar 

  • Buccafusco RJ, Ells SJ, LeBlanc GA (1981) Acute toxicity of priority pollutants to bluegill (Lepomis macrochirus). Bull Environ Contam Toxicol 26(4):446–452

    Article  CAS  Google Scholar 

  • Carnot S (1824) Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Bachelier Ed, Paris. 59pp. In French

  • Clark CE, Burnham AJ, Harto CB, Horner RM (2012) Introduction: the technology and policy of hydraulic fracturing and potential environmental impacts of shale gas development. Environ Pract 14(4):249–261

    Article  Google Scholar 

  • David V, Sautour B, Chardy P (2007) Successful colonization of the calanoid copepod Acartia tonsa in the oligo-mesohaline area of the Gironde estuary (SW France)—natural or anthropogenic forcing? Est, Coast Sh Sci 71(3–4):429–442

    Article  Google Scholar 

  • DEAL Martinique, Région Martinique (2013) Schéma Régional Climat Air Energie Martinique, 114pp. http://energie.mq/wp-content/uploads/2013/07/18-04-2013-SRCAE-Martinique_Etat-des-lieux.pdf

  • Dengler AT Jr, Wilde P (1987) Turbidity currents on steep slopes: application of an avalanche-type numeric model for ocean thermal energy conversion design. Ocean Engin 14(5):409–433

    Article  Google Scholar 

  • Ducatel C, Audoly C, Auvray C (2013) Prediction of OTEC underwater radiated noise and assessment of noise disturbance on cetaceans. 1st Underwater Acoustics international conference and exhibition. Corfu, June 2013

  • Dugger GL (1975) Ocean thermal energy conversion. Astron Aeron 13(11):58–63

    Google Scholar 

  • Erickson SJ, Hawkins CE (1980) Effects of halogenated organic compounds on photosynthesis in estuarine phytoplankton. Bull Environ Contam Toxicol 24(6):910–915

    Article  CAS  Google Scholar 

  • Faizal M, Ahmed MR (2013) Experimental studies on a closed cycle demonstration OTEC plant working on small temperature difference. Renew Energy 51:234–240

    Article  CAS  Google Scholar 

  • Gaela HR, Ferry R (2015) Notes on some hydroids (Cnidaria) from Martinique, with descriptions of five new species Revue suisse de zoologie; annales de la Société zoologique suisse et du Muséum d’histoire naturelle de Genève 122, 2, 213–246

  • Galenon P (2011) Les énergies renouvelables Outre-mer: laboratoire pour notre avenir, Conseil économique, social et environnemental Ed, Paris, 115pp. http://www.collectivites-locales.gouv.fr/files/files/2011_07_rapportenergies_renouvelables.pdf In French. Accessed 13 July 2016

  • Gibson CI, Tone FC, Wilkinson P, Blaylock JW, Schirmer RE (1981) Toxicity, bioaccumulation and depuration of bromoform in five marine species. Pacific Northwest Lab, Richland

    Book  Google Scholar 

  • Giraud M, Boye M, Garçon V, Donval A, de la Broise D (2016) Simulation of an artificial upwelling using immersed in situ phytoplankton microcosms. J Experimental Mar Biol Ecol 475:80–88

    Article  Google Scholar 

  • Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Series 321:1–7

    Article  Google Scholar 

  • Hammond GP, Howard HR, Jones CI (2013) The energy and environmental implications of UK more electric transition pathways: a whole systems perspective. En Pol 52:103–116

    Article  Google Scholar 

  • Harrison JT (1987) The 40 MWe OTEC plant at Kahe Point, Oahu, Hawaii: a case study of potential biological impacts. NOAA Technical Memorandum NMFS NOAA-TM-NMFS-SWFC-68

  • Haslett SK (2009) Coastal systems, Routledge, 2009. 240pp. 107pp

  • Havens P, Morgan C, MacDonald DA (2010) Environmental planning and management for OTEC pilot projects. MTS/IEEE Seattle, OCEANS 2010, art. no. 5664049

  • Höffle H, Wernberg T, Thomsen MS, Holmer M (2012) Drift algae, an invasive snail and elevated temperature reduce ecological performance of a warm-temperate seagrass, through additive effects. Mar Ecol Prog Ser 450:67–80

    Article  Google Scholar 

  • Howarth RW, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim Ch 106(4):679–690

    Article  CAS  Google Scholar 

  • IEDOM (2015a) Martinique rapport annuel 2015. 180 p. In French. Accessed 5 July 2016 http://www.iedom.fr/martinique/publications/rapports-annuels-117/

  • IEDOM (2015b) Saint Barthélémy rapport annuel 2015, 96 p. Accessed 5 July 2016 http://www.iedom.fr/IMG/pdf/ra2015_saint-barthe_lemy.pdf

  • Ikegami Y, Uehara H (1994) Optimum design point for a closed-cycle OTEC system. Proceedings of the International Offshore and Polar Engineering Conference 1, 383–389

  • INSEE (2015) Enquête budget de famille 2011, INSEE Analyses Martinique n°7. In French. Accessed 5 July 2016, https://www.insee.fr/fr/statistiques/1288246.

  • Jiai Y, Nihous GC, Richards KJ (2012) Effects of ocean thermal energy conversion systems on near and far field seawater properties—a case study for Hawaii. Journal of Renewable and Sustain En 4 (6), art. n°063104

  • Jones I, Leach H (1999) Isopycnic modeling of the North Atlantic heat budget. J Geoph Res: Oceans 104(C1):1377–1392

    Article  Google Scholar 

  • Joubert WR, Thomalla SJ, Waldron HN, Lucas MI, Boye M, Le Moigne FAC, Planchon F, Speich S (2011) Nitrogen uptake by phytoplankton in the Atlantic sector of the Southern Ocean during late austral summer. Biogeosciences 8(10):2947–2959

    Article  CAS  Google Scholar 

  • Journal Officiel (2012) Décret no 2014-285 du 3 mars 2014 modifiant la nomenclature des installations classées pour la protection de l’environnement. 18pp. In French. Accessed April 30 2016. https://www.legifrance.gouv.fr/jo_pdf.do?id=JORFTEXT000028680960

  • Kim NJ, Ng KC, Chun W (2009) Using the condenser effluent from a nuclear power plant for Ocean Thermal Energy Conversion (OTEC). International Communications in Heat and Mass Transfer 36(10):1008–1013

    Article  CAS  Google Scholar 

  • Krause JW, Nelson DM, Brzezinski MA (2011) Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography 58(3–4):434–448

    Article  CAS  Google Scholar 

  • Krylov VV (2010) Effects of electromagnetic fields on parthenogenic eggs of Daphnia magna Straus. Ecotoxicol Environ Saf 73(1):62–66

    Article  CAS  Google Scholar 

  • LeBlanc GA (1980) Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull. Environ Contam Toxicol 24(5):684–691

    Article  CAS  Google Scholar 

  • Lee W, Yang K-L (2014) Using medaka embryos as a model system to study biological effects of the electromagnetic fields on development and behavior. Ecotoxicol Environ Saf 108:187–194

    Article  CAS  Google Scholar 

  • Mattice JS, Tsai SC, Burch MB, Beauchamp JJ (1981) Toxicity of trihalomethanes to common carp embryos. Trans Am Fish Soc 110(2):261–269

    Article  CAS  Google Scholar 

  • Menesguen A, Monbet Y, Cousin F (1989) OTEC’s subsurface discharges of deep ocean water: modelling their effects on the primary production. American Society of Civil Engineers. Ocean Energy Recovery conference proceeding. 235–246

  • Morisaki T, Ikegami Y (2012) Research on ocean thermal energy conversion using HFC245fa as working fluid. Proceedings of the International Offshore and Polar Engineering Conference, pp. 776–782

  • Nihous GC (2005) An order-of-magnitude estimate of ocean thermal energy conversion resources. Journal of Energy Resources Technology, Transactions of the ASME 127(4):328–333

    Article  Google Scholar 

  • Nihous GC (2007) An estimate of Atlantic Ocean thermal energy conversion (OTEC) resources. Ocean Engin 34(17–18):2210–2221

    Article  Google Scholar 

  • NRJRUPplus (2007) Modelling study for the exploitation of marine resources for electricity generation in the outermost regions. Dirección General de Asuntos Económicos con la Unión Europea—Gobierno de Canarias (Ed). 68pp

  • OMEGA (2015) Bilan Energétique de la Martinique, OMEGA Eds, Ducos, 68pp. In French. http://energie.mq/wpcontent/uploads/2016/12/OMEGA_Bilan_energetique_Detaille_2015.pdf

  • Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain En Rev 15(3):1513–1524

    Article  Google Scholar 

  • Plocek TJ, Laboy M, Marti JA (2009) Ocean-thermal-energy conversion. JPT, J Petrol Technol 61(7):65–66

    Article  Google Scholar 

  • Rajagopalan H, Nihous GC (2013) An assessment of global ocean thermal energy conversion resources with a high-resolution ocean general circulation model. Trans ASME 135:1–9

    Google Scholar 

  • Rao G, Lin A (2011) Distribution of inundation by the great tsunami of the 2011 Mw 9.0 earthquake off the pacific coast of Tohoku (Japan), as revealed by ALOS imagery data. Intern J Rem Sens 32(22):7073–7086

    Article  Google Scholar 

  • Rio Carrillo AM, Frei C (2009) Water: a key resource in energy production. En Pol 37(11):4303–4312

    Article  Google Scholar 

  • Sansone FJ, Kearney TJ (1981) Chlorination kinetics of surface and deep tropical seawater. In R.L. Jolley, H.Gorchev, and D.R.Hamilton,Jr. (Eds.), Water chlorination: environmental impact and health effects, 5, 59, 755–762

  • Secroun J-P (2016) NEMO Inquisitory OTEC. E1500014/97 172 pp

  • Semmari H, Stitou D, Mauran S (2012) A novel Carnot-based cycle for ocean thermal energy conversion. Energy 43(1):361–375

    Article  CAS  Google Scholar 

  • Tortell PD, Maldonado MT, Granger J, Price NM (1999) Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol 29(1):1–11

    Article  CAS  Google Scholar 

  • Trabalka JR, MB Burch (1978) Investigation of the effects of halogenated organic compounds produced in cooling systems and process effluents on aquatic organisms. In R.L. Jolley, H. Gorchev, and D.R. Hamilton, Jr. (Eds.), Water chlorination: environmental impact and health effects: 163–173

  • U.S. Environmental Protection Agency: U.S. EPA (1978) In-depth studies on health and environmental impacts of selected water pollutants, U.S. Environmental Protection Agency, Duluth, Minnesota

  • Uehara H, Ikegami Y (1993) Parametric performance analysis of OTEC using Kalina cycle. Solar Engin:203–207

  • Vega LA (1992) Economics of ocean thermal energy conversion (OTEC). In: R.J. Seymour, ASCE Publications. Ocean energy recovery—the state of the art, pp. 152–181

  • Vega LA (2010) Economics of ocean thermal energy conversion (OTEC): an update. Offshore technology conference. Houston, Texas, USA, 3–6 May 2010

  • Vega LA (2012) Ocean thermal energy conversion. Encycl Sustainab Sci Technol, 7296–7328

  • Vidussi F, Claustre H, Manca BB, Luchetta A, Marty JC (2001) Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J Geophys Res 106:19939–19956

    Article  Google Scholar 

  • Ward GS, Parrish PR, Rigby RA (1981) Early life stage toxicity tests with a saltwater fish: effects of eight chemicals on survival, growth, and development of sheepshead minnows. J Toxicol Environ Health 8(1–2):225–240

    Article  CAS  Google Scholar 

  • Werner E (1981) Integrated OTEC-mariculture system. Proceedings of the Ocean Energy Conference 1, pp. 229–233

  • Worrall P, Hurtt J (2010) Dynamic medium voltage power cables. Proceedings of the Annual Offshore Technology Conference 3, pp. 2220–2234

  • Yoza BA, Nihous GC, Takahashi PK, Golmen LG, War JC, Otsuka K, Ouchi K, Masutani SM (2010) Deep ocean water resources in the 21st century. Mar Technol Soc J 44(3):80

    Article  Google Scholar 

Download references

Acknowledgements

Authors want to thank DCNS and CTM for allowing them to use classified documents in order to write this paper. The authors sincerely thank Constance Haig for the first revision of the text and Stella Ghouti for her quick, extensive and efficient English reviewing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien A. Devault.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devault, D.A., Péné-Annette, A. Analysis of the environmental issues concerning the deployment of an OTEC power plant in Martinique. Environ Sci Pollut Res 24, 25582–25601 (2017). https://doi.org/10.1007/s11356-017-8749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8749-3

Keywords

Navigation