Skip to main content

Advertisement

Log in

Exploiting fruit byproducts for eco-friendly nanosynthesis: Citrus × clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells

  • Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Process byproducts from the fruit industry may represent a cheap and reliable source of green reducing agents to be used in current bio-nanosynthesis. This study reports the use of orange (Citrus × clementina) peel aqueous extract (OPE) for one-pot green synthesis of silver nanoparticles (AgNPs) with high effectiveness against various microbial pathogens as well as rat glial tumor C6 cells. The effects of various operational parameters on the synthesis of AgNPs were systematically investigated. The morphology, particle size, and properties of synthesized AgNPs were characterized using UV–visible spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and Fourier transform infrared spectroscopy. High-resolution transmission electron microscopy shows that the nanoparticles are mostly spherical in shape and monodispersed, with an average particle size of 15–20 nm. Notably, the OPE-synthesized AgNPs were stable up to 6 months without change in their properties. Low doses of OPE-AgNPs inhibited the growth of human pathogens Escherichia coli, Bacillus cereus, and Staphylococcus aureus. The minimum inhibitory concentration and minimum bactericidal concentration of AgNPs against selected pathogenic bacteria were determined. OPE-AgNPs exhibited strong antioxidant activity in terms of ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging (IC50 49.6 μg/mL) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging (IC50 63.4 μg/mL). OPE-AgNPs showed dose-dependent response against rat glial tumor C6 cells (LD50 60 μg/mL) showing a promising potential as anticancer agents. Overall, the current investigation highlighted a cheap green technology route to synthesize AgNPs using OPE byproducts and could potentially be utilized in biomedical, cosmetic, and pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  CAS  Google Scholar 

  • Ajitha B, Reddy AKY, Reddy SP (2014) Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim Acta Part A 121:164–172

    Article  CAS  Google Scholar 

  • Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–148

  • Bae JT, Ko HJ, Kim GB, Pyo HB, Lee GS (2012) Protective effects of fermented Citrus unshiu peel extract against ultraviolet-A-induced photoageing in human dermal fibrobolasts. Phytother Res 26:1851–1856

    Article  CAS  Google Scholar 

  • Balan K, Qing W, Wang Y, Ma F, Zhang Y (2016) Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Adv 6:40162

    Article  CAS  Google Scholar 

  • Basavegowda N, Lee YR (2013) Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: a novel approach towards waste utilization. Mater Lett 109:31–33

    Article  CAS  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by standardized single disc method. Am J Clin Pathol 45:493–496

    Article  CAS  Google Scholar 

  • Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34

    Article  Google Scholar 

  • Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microbial Technol. doi:10.1016/j. enzmictec.2016.08.022

    Google Scholar 

  • Bocco M, Cuvelier E, Richard H (1998) Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem 46:2123–2129

    Article  CAS  Google Scholar 

  • Devanesan S, AlSalhi MS, Vishnubalaji R, Alfuraydi AA, Alajez NM, Alfayez M, Murugan K, Sayed SRM, Nicoletti M, Benelli G (2016) Rapid biological synthesis of silver nanoparticles using plant seed extracts and their cytotoxicity on colorectal cancer cell lines. J Clust Sci. doi:10.1007/s10876-016-1134-4

    Google Scholar 

  • Ekar SU, Ganga S, Khollam YB, Wani PN, Jadkar SR, Chaskar MG, Jadhav SS, Fadel A, Jadhav VV, Shendkar JH, Mane RS (2016) Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods. J Solid State Electrochem. doi:10.1007/s10008-016-3376-3

    Google Scholar 

  • Etxeberria U, De La Garza AL, Campin J, Martnez JA, Milagro FI (2012) Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Tar 16:269–297

  • Ghaedi M, Yousefinejad M, Safarpoor M, Zare KH, Purkait MK (2015) Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J Ind Eng Chem 31:167–172

    Article  CAS  Google Scholar 

  • Gurunathan S, Han JW, Dayem AA, Eppakayala V, Park JH, Cho SG, Lee KJ, Kim JH (2013) Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J Ind Eng Chem 19:1600–1605

    Article  CAS  Google Scholar 

  • Jang SJ, Yang IJ, Tettey CO, Kim KM, Shin HM (2016) In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mater Sci Eng C 68:430–435

    Article  CAS  Google Scholar 

  • Kanchi S, Kumar G, Lo AY, Tseng CM, Chen SK, Lin CY, Chin TS (2014) Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: a green approach. Arab J Chem. doi:10.1016/j.arabjc.2014.08.006

    Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumar J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A 79:594–598

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol 3:95–101

    Article  CAS  Google Scholar 

  • Kora AJ, Sashidhar RB, Arunachalam J (2010) Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym 82:670–679

    Article  CAS  Google Scholar 

  • Krishnan P, Yan KJ, Windler D, Tubbs J, Grand R, Li BDL, Aldaz CM, McLarty J, Kleiner-Hancock HE (2009) Citrus auraptene suppresses cyclin D1 and significantly delays N-methyl nitrosourea induced mammary carcinogenesis in female Sprague–Dawley rats. BMC Cancer 9:259

    Article  Google Scholar 

  • Kumar B, Smita K, Cumbal L, Camacho J, Hernández-Gallegos E, Chávez MG, López Grijalva M, Andrade K (2016) One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications. Mater Sci Eng C 62C:725–731

    Article  Google Scholar 

  • Lee KJ, Park SH, Govarthanan M, Hwang PH, Seo YS (2013) Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 105:128–131

    Article  CAS  Google Scholar 

  • Lee KD, Nagajyothi PC, Sreekanth TVM, Park SH (2015) Eco-friendly synthesis of gold nanoparticles (AuNPs) using Inonotus obliquus and their antibacterial, antioxidant and cytotoxic activities. J Ind Eng Chem 26:67–72

    Article  Google Scholar 

  • Logeswari P, Silambarasan S, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19:311–317

    Article  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6:35–44

    CAS  Google Scholar 

  • Martins D, Frungillo L, Anazzetti MC, Melo PS, Duran N (2010) Antitumoral activity of L-ascorbic acid-poly-D,L-(lactide-co-glycolide) nanoparticles containing violacein. Int J Nanomedicine 5:77–85

    Article  CAS  Google Scholar 

  • Mata R, Nakkala JR, Sadras SR (2015) Biogenic silver nanoparticles from Abutilon indicum: Their antioxidant, antibacterial and cytotoxic effects in vitro. Colloid Surface B 128:276–286

  • Mittal K, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  Google Scholar 

  • Moldovan B, David L, Achim M, Clichici S, Filip GA (2016) A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. J Mol Liq 221:271–278

  • Moharram FA, Marzouk MSA, Ibrahim MT, Marby TJ (2006) Antioxidant galloylated flavonol glycosides from Calliandra haematocephala. Nat Prod Res 20:927–934

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16:2346–2353

    Article  CAS  Google Scholar 

  • Nazeruddin GM, Prasad NR, Waghmare SR, Garadkar KM, Mulla IS (2014) Extracellular biosynthesis of silver nanoparticle using Azadirachta indica leaf extract and its anti-microbial activity. J Alloys Compd 583:272–277

    Article  CAS  Google Scholar 

  • Niraimathi KL, Sudha V, Lavanya R, Brindha P (2013) Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf B: Biointerfaces 102:288–291

    Article  CAS  Google Scholar 

  • Nirmala JG, Akila S, Nadar MSAM, Narendhirakannan RT, Chatterjee S (2016) Biosynthesized Vitis vinifera seed gold nanoparticles induce apoptotic cell death in A431 skin cancer cells. RSC Adv 6:82205

    Article  CAS  Google Scholar 

  • Otari SV, Patil RM, Ghosh SJ, Pawar SH (2014) Green phytosynthesis of silver nanoparticles using aqueous extract of Manilkara zapota (L.) seeds and its inhibitory action against Candida species. Mater Lett 116:367–369

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli? Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Pavela R, Murugan K, Canale A, Benelli G (2017) Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind Crop Prod 97:338–344

    Article  CAS  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

  • Pugazhendhi S, Sathya P, Palanisamy PK, Gopalakrishnan R (2016) Synthesis of silver nanoparticles through green approach using Dioscorea alata and their characterization on antibacterial activities and optical limiting behavior. J Photochem Photobiol B 159:155–160

    Article  CAS  Google Scholar 

  • Rajan R, Chandranb K, Harper SL, Yun S-I, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373

    Article  CAS  Google Scholar 

  • Ravichandran V, Vasanthi S, Shalini S, Ali Shah SA, Harish R (2016) Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater Lett 180:264–267

    Article  CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  CAS  Google Scholar 

  • Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloid Surface B: Biointerfaces 108:80–84

    Article  CAS  Google Scholar 

  • Saratale GD, Saratale RG, Benelli G, Kumar G, Pugazhendhi A, Kim DS, Shin HS (2017) Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J Clust Sci. doi:10.1007/s10876-017-1179-z

    Google Scholar 

  • Sathiya CK, Akilandeswari S (2014) Fabrication and characterization of silver nanoparticles using Delonix elata leaf broth. Spectrochim Acta Part A Mol Biomol Spectrosc 128:337–341

    Article  CAS  Google Scholar 

  • Sriranjani R, Srinithya B, Vellingiri V, Brindha P, Anthony SP, Sivasubramanian A, Muthuraman MS (2016) Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. J Mol Liq 220:926–930

    Article  CAS  Google Scholar 

  • Syed A, Ahmad A (2012) Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Coll Surf B Biointerfaces 97:27–31

    Article  CAS  Google Scholar 

  • Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK (2016) Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol B 163:311–318

    Article  CAS  Google Scholar 

  • Velmurugan P, Lee SM, Cho M, Park JH, Seo SK, Myung H, Bang KS, Oh BT (2014) Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria. Appl Microbiol Biotechnol 98:8179–8189

    Article  CAS  Google Scholar 

  • Velmurugan P, Cho M, Lim SS, Seo SK, Myung H, Bang KS, Sivakumar S, Cho KM, Oh BT (2015) Phytosynthesis of silver nanoparticles by Prunus yedoensis leaf extract and their antimicrobial activity. Mater Lett 138:272–275

    Article  CAS  Google Scholar 

  • Venkatpurwar V, Pokharkar V (2011) Green synthesis of silver nanoparticles using marine polysaccharide: study of in-vitro antibacterial activity. Mater Lett 65:999–1002

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Nalini SPK, Prakash NU, Madhankumar D (2012) Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Mater Lett 75:33–35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Agricultural Research Center funded by the Ministry of Food, Forestry, and Fisheries, Korea. One of the author GK acknowledges Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant No: 2016H1D3A1908953). The authors would like to thank Prof. Shrikrishna D. Sartale, Department of Physics, Savitribai Phule Pune University, India, for availing the HR-TEM facility. The authors are also thankful to Mr. Oh Sung-Taek, Dongguk University, for his technical help during anticancer studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Dattatraya Saratale.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saratale, R.G., Shin, HS., Kumar, G. et al. Exploiting fruit byproducts for eco-friendly nanosynthesis: Citrus × clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells. Environ Sci Pollut Res 25, 10250–10263 (2018). https://doi.org/10.1007/s11356-017-8724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8724-z

Keywords

Navigation