Skip to main content

Advertisement

Log in

Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios—a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Agroforestry is a sustainable land use system with a promising potential to sequester atmospheric carbon into soil. This system of land use distinguishes itself from the other systems, such as sole crop cultivation and afforestation on croplands only through its potential to sequester higher amounts of carbon (in the above- and belowground tree biomass) than the aforementioned two systems. According to Kyoto protocol, agroforestry is recognized as an afforestation activity that, in addition to sequestering carbon dioxide (CO2) to soil, conserves biodiversity, protects cropland, works as a windbreak, and provides food and feed to human and livestock, pollen for honey bees, wood for fuel, and timber for shelters construction. Agroforestry is more attractive as a land use practice for the farming community worldwide instead of cropland and forestland management systems. This practice is a win–win situation for the farming community and for the environmental sustainability. This review presents agroforestry potential to counter the increasing concentration of atmospheric CO2 by sequestering it in above- and belowground biomass. The role of agroforestry in climate change mitigation worldwide might be recognized to its full potential by overcoming various financial, technical, and institutional barriers. Carbon sequestration in soil by various agricultural systems can be simulated by various models but literature lacks reports on validated models to quantify the agroforestry potential for carbon sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Abbas F (2013) Analysis of a historical (1981-2010) record of temperature of semi-arid Punjab, Pakistan. Earth Interact 17:1–23

    Article  Google Scholar 

  • Abbas F, Ahmad A, Safeeq M, Ali A, Saleem F, Hamad HM, Farhad W (2014) Changes in precipitation extremes over arid to semi-arid and sub-humid Punjab, Pakistan. Theor Appli Climatolo 116:671–680

    Article  Google Scholar 

  • Abbasi MK, Tahir MM, Sabir N, Khurshid M (2015) Impact of the addition of different plant residues on nitrogen mineralization–immobilization turnover and carbon content of a soil incubated under laboratory conditions. Solid Earth 6:197–205

    Article  Google Scholar 

  • Achard F, Beuchle R, Mayaux P, Stibig HJ, Bodart C, Brink A, Carboni S, Desclée B, Donnay F, Eva HD, Lupi A, Raši R, Seliger R, Simonetti D (2014) Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob Chang Biol 20:2540–2554

    Article  Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311

    Article  Google Scholar 

  • Ahmad AA, Fares A, Paramasivam S, Elrashidi MA, Savabi RM (2009) Biomass and nutrient concentration of sweet corn roots and shoots under organic amendments application. J Environ Sci Health, Part B Pesticides, Food Contaminants, and Agricultural Waste 44(7):742–754

    Article  CAS  Google Scholar 

  • Ajayi OC, Place F, Akinnifesi FK, Sileshi GW (2011) Agricultural success from Africa: the case of fertilizer tree systems in southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe). Inter J Agri Sustain 9:130–136

    Google Scholar 

  • Alao JS, Shuaibu RB (2013) Agroforestry practices and concepts in sustainable land use systems in Nigeria. J Horti Forestry 10:156–159

    Google Scholar 

  • Almeida AC, Siggins A, Batista TR, Beadle C, Fonseca S, Loos R (2010) Mapping the effect of spatial and temporal variation in climate and soils on Eucalyptus plantation production with 3-PG, a process-based growth model. Forest Ecol Manag 9:1730–1740

    Article  Google Scholar 

  • Amézquita MC, Ibrahim M, Llanderal T, Buurman P, Amézquita E (2005) Carbon sequestration in pastures, silvopastoral systems and forests in four regions of the Latin American tropics. Inter J Sustain Future Human Security 21:31–49

    Google Scholar 

  • Anaya-Romero M, Abd-Elmabod SK, Muñoz-Rojas M, Castellano G, Ceacero CJ, Alvarez S, Méndez M, De la Rosa D (2015) Evaluating soil threats under climate change scenarios in the Andalusia region, southern Spain. Land Degrad Develop 26:441–449. doi:10.1002/ldr.2363

    Article  Google Scholar 

  • Anderson E, Zerriffi H (2012) Seeing the trees for the carbon: agroforestry for development and carbon mitigation. Clim Chang 115:741–757

    Article  Google Scholar 

  • Bartholomé E, Belward AS (2005) GLC2000 a new approach to global land cover mapping from earth observation data. Int J Remote Sens 26:1959–1977

    Article  Google Scholar 

  • Bayala J, Wallace JW (2015) The water balance of mixed tree-crop systems In. In: Black, C, Wilson, J., Ong, C.K (Eds.), Tree–Crop Interactions: Agroforestry in a Changing Climate. CABI, pp. 140–190

  • Behera SK, Shukla AK (2015) Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degrad Develop 26:71–79. doi:10.1002/ldr. 2306

    Article  Google Scholar 

  • Benites J, Dudal R, Koohafkan P (1999) Land, the platform oflocal food security and global environmental protection. In: Prevention of Land Degradation, Enhancement of Carbon Sequestration and Conservation of Biodiversity Through Land Use Change and Sustainable Management with a Focus on Latin America and the Caribbean. Proceedings of the IFAD/FAO Expert Consultation, IFAD, Rome, Italy, April 15, pp. 37–42

  • Berendse F, van Ruijven J, Jongejans E, Keesstra S (2015) Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18:881–888. doi:10.1007/s10021-015-9869-6

    Article  CAS  Google Scholar 

  • Birch-Thomsen T, Elberling B, Fog B, Magid J (2007) Temporal and spatial trends in soil organic carbon stocks following maize cultivation in semi-arid Tanzania, East Africa. Nutr Cycl Agroecosys 79:291–302

    Article  CAS  Google Scholar 

  • Blanco-Canqui H, Lal R (2004) Mechanisms of carbon sequestration in soil aggregates. Critical Reviews Plant Sci 23:481–504

    Article  CAS  Google Scholar 

  • Bralower T, Bice D 2016 Overview of the carbon cycle from a systems perspective. https://www.e-education.psu.edu/earth103/node/1019 (accessed on October 28, 2016)

  • Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost K (2015) The interdisciplinary nature of soil. Soil 1:117–129. doi:10.5194/soil-1-117-2015

    Article  Google Scholar 

  • Bruce JP, Frome M, Haites E, Janzen H, Lal R, Paustian K (1999) Carbon sequestration in soils. J Soil Water Conser 54:382–390

    Google Scholar 

  • Bruun TB, Elberling B, de Neergaard A, Magid J (2015) Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degrad Develop 26:272–283

    Article  Google Scholar 

  • Cadotte MW (2013) Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proceedings of the National Academy of Sci 110:8996–9000

    Article  CAS  Google Scholar 

  • Carter M, Angers D, Gregorich E, Bolinder M (2003) Characterizing organic matter retention for surface soils in eastern Canada using density and particle size fractions. Canad J Soil Sci 83:11–23

    Article  CAS  Google Scholar 

  • Cerdà A, Lavee H, Romero-Díaz A, Hooke J, Montanarella L (2010) Preface. Land Degrad Develop 21:71–74

    Article  Google Scholar 

  • Chiti T, Grieco E, Perugini L, Rey A, Valentini R (2014) Effect of the replacement of tropical forests with tree plantations on soil organic carbon levels in the Jomoro district, Ghana. Plant Soil 375:47–59

    Article  CAS  Google Scholar 

  • Coleman K, Jenkinson DS (1996) RothC-26.3 A model for the turnover of carbon in soil. In: Evaluation of Soil Organic Matter Models using Existing, Long-term Datasets (eds Powlson DS, Smith P, Smith JU), pp. 237–246

  • Cubbage F, Balmelli G, Bussoni A, Noellemeyer E, Pachas AN, Fassola H, Colcombet L, Rossner B, Frey G, Dube F, deSilva ML, Stevenson H, Hamilton J, Hubbard W (2013) Comparing silvopastoral systems and prospects in eight regions of the world. Agroforestry Sys 86:303–314

    Article  Google Scholar 

  • Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL (2009) Controls on long-term root and leaf litter decomposition in neotropical forests. Global Change Bio 15:1339–1355

  • David N, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollution 116:381–389

    Article  Google Scholar 

  • De Blécourt M, Brumme R, Xu J, Corre MD, Veldkamp E (2013) Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations. PLoS One 8:e69357. doi:10.1371/journal.pone.0069357

    Article  CAS  Google Scholar 

  • De Moraes Sá JC, Séguy L, Tivet F, Lal R, Bouzinac S, Borszowskei PR, Briedis C, dos Santos JB, da Cruz HD, Bertoloni CG, Rosa J, Friedrich T (2015) Carbon depletion by plowing and its restoration by no-till cropping systems in oxisols of subtropical and tropical agro-ecoregions in Brazil. Land Degrad Develop 26:531–543. doi:10.1002/ldr.2218

    Article  Google Scholar 

  • De Oliveira SP, de Lacerda NB, Blum SC, Escobar MEO, de Oliveira TS (2015) Organic carbon and nitrogen stocks in soils of northeastern Brazil converted to irrigated agriculture. Land Degrad Develop 26:9–21. doi:10.1002/ldr. 2264

    Article  Google Scholar 

  • Debolini M, Schoorl JM, Temme A, Galli M, Bonari E (2015) Changes in agricultural land use affecting future soil mredistribution patterns: a case study in southern Tuscany (Italy). Land Degrad Develop 26:574–586

    Article  Google Scholar 

  • Decock CJ, Lee M, Necpalova EIP, Pereira DM, Tendall JS (2015) Mitigating N2O emissions from soil: from patching leaks to transformative action. Soil 1:687–694. doi:10.5194/soil-1-687-2015

    Article  Google Scholar 

  • Dixon RK (1995) Agroforestry systems: sources or sinks of greenhouse gases? Agroforestry Sys 31:99–116

    Article  Google Scholar 

  • DOE/SC-108, US Department of Energy (2008) Carbon cycling and bio sequestration: integrating biology and climate through systems science, report from the March 2008 Workshop, U.S. Department of Energy Office of Science. http://genomicsgtl.energy.gov/carboncycle (validated: February 4, 2016)

  • Dumanski J, Lal R (2004) THEME PAPER: Soil Conservation and the Kyoto Protocol Facts and Figures. Agriculture and the Environment, Environment Bureau, Agriculture and Agri-Food Canada, Ottawa, ONTARIO. Available at: http://www.agr.gc.ca/policy/environment/soil_cons_e.phtml (validated: March 5, 2016)

  • Fagbemi T (2002) Investment opportunities in renewable resources industry-forestry, 1st edn. Belodan Press, Nigeria

    Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fahad S, Chen Y, Saud S, Wang K, Xiong D, Chen C, Wu C, Shah F, Nie L, Huang J (2013) Ultraviolet radiation effect on photosynthetic pigments, biochemical attributes, antioxidant enzyme activity and hormonal contents of wheat. J Food, Agri Environ 11(3&4):1 6 3 5–1 6 4 1

    CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2014a) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res. doi:10.1007/s11356-014-3754-2

    Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2014b) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. doi:10.1007/s10725-014-0013-y

    Google Scholar 

  • Fahad S, Hussain S, Saud S, Tanveer M, Bajwa AA, Hassan S, Shah AN, Ullah A, Wu C, Khan FA, Shah F, Ullah S, Chen Y, Huang J (2015a) A biochar application protects rice pollen from high-temperature stress. Plant Physiol Biochem 96:281–287

    Article  CAS  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015b) Crop plant hormones and environmental stress. Sustain Agric Rev 15:371–400

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F et al (2016a) Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One 11(7):e0159590. doi:10.1371/journal.pone.0159590

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016b) Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. Front Plant Sci 7:1250. doi:10.3389/fpls.2016.01250

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Jr A, Nasim W, Arif M, Wang F, Huang J (2016c) Exogenously applied plant growth regulators affect heat-stressed Rice pollens. J Agron Crop Sci 202:139–150

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah KF, Ullah S, AlharbyH NW, Wu C, Huang J (2016d) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2010) “Climate-Smart” Agriculture policies, practices and financing for food security, adaptation and mitigation. http://www.fao.org/docrep/013/i1881e/i1881e00.pdf. Accessed 8 Feburary 2017

  • Ferreira ACC, Leite LFC, de Araújo ASF, Eisenhauer N (2016) Land-use type effects on soil organic carbon and microbial properties in a semi-arid region of northeast Brazil. Land Degrad Develop 27:171–178

    Article  Google Scholar 

  • Fialho RC, Zinn YL (2014) Changes in soil organic carbon under Eucalyptus plantations in Brazil: a comparative analysis. Land Degrad Develop 25:428–437. doi:10.1002/ldr.2158

    Article  Google Scholar 

  • Francaviglia R, Coleman K, Whitmore AP, Doro L, Urracci G, Rubino M, Ledda L (2012) Changes in soil organic carbon and climate change—application of the RothC model in agrosilvo-pastoral Mediterranean systems. Agric Syst 112:48–54

    Article  Google Scholar 

  • Garcia-Diaz A, Bienes-Allas R, Gristina L, Cerdà A, Novara A, Pereira P (2016) Carbon input threshold for soil carbon budget optimization in eroding vineyards. Geoderma 271:144–149. doi:10.1016/j.geoderma

    Article  CAS  Google Scholar 

  • Gärdenäs AI, Ågren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions—from molecular to global scale. Soil Biol Biochem 43:702–717. doi:10.1016/j.soilbio.2010.04.006

    Article  CAS  Google Scholar 

  • Garrity DP, Akinnifesi FK, Ajayi OC, Weldesemayat SG, Mowo JG, Kalinganire A, Larwanou M, Bayala J (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Security 2:197–214

    Article  Google Scholar 

  • Ghezehei SB, Annandale JG, Everson CS (2015) Modelling radiation interception and water balance in agroforestry systems. In: Black, C., Wilson, J., Ong, C.K. (Eds.), Tree –Crop Interactions: Agroforestry in a Changing Climate CABI, pp. 41–56

  • Gümüs I, Şeker C (2015) Influence of humic acid applications on modulus of rupture, aggregate stability, electrical conductivity, carbon and nitrogen content of a crusting problem soil. Solid Earth 6:1231–1236. doi:10.5194/se-6-1231-2015

    Article  Google Scholar 

  • Gutierrez V, Harris VH, Pearson NL, Petrova TRH, Grimland S, Brown SS (2009) USAID Forest Carbon Calculator: Data and Equations for the Agroforestry Tool. Submitted by Winrock International under USAID Cooperative Agreement No. EEM-A-00-06-00024–00

  • Hall NM, Kaya B, Dick J, Skiba U, Niang A, Tabo R (2005) Effect of improved fallow on crop productivity, soil fertility and climate forcing gas emissions in semi-arid conditions. Biol Fert Soils 42:224–230

    Article  Google Scholar 

  • Hao XM, Chen YN, Li WH (2009) Indicating appropriate groundwater tables for desert river-bank forest at the Tarim River, Xinjiang, China. Environ Monit Assess 152:167–177

    Article  Google Scholar 

  • Hochman Z, van Rees H, Carberry PS, Hunt JR, McCown RL, Gartmann A, Holzworth D, van Rees S, Dalgliesh NP, Long W, Peake AS, Poulton PL, McClelland T (2009) Re-inventing model-based decision support with Australian dryland farmers. 4. Yield Prophet (R) helps farmers monitor and manage crops in a variable climate. Crop Pasture Sci 11:1057–1070

    Article  Google Scholar 

  • Holmén K (2000) The global carbon cycle. In: Jacobson JM, Charlson RJ, Rodhe H, Orians G (eds) Earth systems science: from biogeochemical cycles to global change. Academic Press, New York, pp 282–321

    Chapter  Google Scholar 

  • Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C (2014) APSIM-evolution towards a new generation of agricultural systems simulation. Environ Modelling Soft 62:327–350

    Article  Google Scholar 

  • Hombegowda HC, Van-Straaten O, Köhler M, Hölscher D (2016) On the rebound: soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India. Soil 2:13–23

    Article  Google Scholar 

  • Hu Y, Niu Z, Zeng D, Wang C (2015) Soil amendment improves tree growth and soil carbon and nitrogen pools in mongolian pine plantations on post-mining land in northeast China. Land Degrad Develop 26:807–812

    Article  Google Scholar 

  • Hultine KR, Williams DG, Burgess SSO, Keefer TO (2003) Contrasting patterns of hydraulic redistribution in three desert phreatophytes. Oecologia 2:167–175

    Article  Google Scholar 

  • Hussain S, Shaobing P, Fahad S, Abdul K, Huang J, Kehui C, Lixiao N (2014) Rice management interventions to mitigate greenhouse gas emissions: a review. Environ Sci Pollut Res. doi:10.1007/s11356-014-3760-4

    Google Scholar 

  • Hutchinson JJ, Campbell CA, Desjardins RL (2007) Some perspectives on carbon sequestration in agriculture. Agri Forest Meteorol 142:288–302

    Article  Google Scholar 

  • Inderjit MAU (2002) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser-Verlag, Berlin

    Google Scholar 

  • IPCC (2000a) Land use, land-use change, and forestry. Cambridge University Press, Cambridge, UK, p 375 A special report of the IPCC

  • IPCC, (2000b) Land Use, Land-Use Change, and Forestry. A Special Report of the IPCC. Cambridge University Press, Cambridge, UK

  • IPCC (2007a) Summary for Policymakers. In Solomon SS, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL

  • IPCC (2007b) Climate change 2007: mitigation of climate change. Working group III contribution to the intergovernmental panel on climate change. Fourth Assessment Report, Bangkok http://www.ipcc.ch/ipccreports/index.htm (accessed: Jan. 28, 2015)

    Google Scholar 

  • Jackson NA, Wallace JS, Ong CK (2000) Tree pruning as a means of controlling water use in an agroforestry system in Kenya. Forest Ecol Manag 2:133–148

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Johnson JMF, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J 98:622–636. doi:10.2134/agronj2005.0179

    Article  CAS  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Sys 76:1–10

    Article  Google Scholar 

  • Jose S, Bardhan S (2012) Agroforestry for biomass production and carbon sequestration: an overview. Agroforest Syst 86:105–111. doi:10.1007/s10457-012-9573-x

  • Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agrofor Sys 61:237–255. doi:10.1023/B:AGFO.0000029002.85273.9b

    Google Scholar 

  • Keesstra SD, Geissen V, van Schaik L, Mosse K, Piiranen S (2012) Soil as a filter for groundwater quality. Current Opinions in Environ Sustain 4:507–516. doi:10.1016/j.cosust.2012.10.007

    Article  Google Scholar 

  • Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton JN, Pachepsky Y, van der Putten WH, Bardgett RD, Moolenaar S, Mol G, Jansen B, Fresco LO (2016) The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2:111–128. doi:10.5194/soil-2-111-2016

    Article  Google Scholar 

  • Keutgen N, Chen K (2001) Responses of citrus leaf photosynthesis, chlorophyll fluorescence, macronutrient and carbohydrate contents to elevated CO2. J Plant Physiol 158:1307–1316

    Article  CAS  Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. Forest Ecol Manag 246:208–221

    Article  Google Scholar 

  • Kursten E (2000) Fuelwood production in agroforestry systems for sustainable land use and CO2 mitigation. Ecolog Eng 16:S69–S72

    Article  Google Scholar 

  • Laganière J, Angers D, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Chang Biol 16:439–453. doi:10.1111/j.1365 2486.2009.01930.x

    Article  Google Scholar 

  • Lal R (2004a) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2004b) Carbon emissions from farm operations. Environ Inter 30:981–990

    Article  CAS  Google Scholar 

  • Lal R (2004c) Soil carbon sequestration impacts on global climate change and food security. Sci 304:1623–1627

    Article  CAS  Google Scholar 

  • Lal R (2005) Soil carbon sequestration in natural and managed tropical forest ecosystems. Inter J Sustain Future Human Security 21:1–30

    Google Scholar 

  • Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Develop 17:197–209

    Article  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philosophical transactions of the Royal Society B Biological Sci 363:815–830

    Article  CAS  Google Scholar 

  • Le Quéré CL, Moriarty R, Andrew RM, Canadell JG, Sitch S et al (2015) Global Carbon Budget 2015. Earth System Science Data. doi:10.5194/essd-7-349-2015

    Google Scholar 

  • Leified J (2006) Soils as sources and sinks of greenhouse gases. Geological Society Special Publications 266:23–44

    Article  Google Scholar 

  • Liu Z, Yao Z, Huang H, Wu S, Liu G (2014) Land use and climate changes and their impacts on runoff in the Yarlung Zangbo river basin, China. Land Degrad Develop 25:203–215. doi:10.1002/ldr. 1159

    Article  Google Scholar 

  • Luedeling E, Smethurstc PJ, Baudrond F, Bayalae J, Huthf NI, van Noordwijkg M, Ongh CK, Muliag R, Lusianag B, Muthuria C, Sinclaira FL (2016) Field-scale modeling of tree–crop interactions: challenges and development needs. Agri Systems 142:51–69

    Article  Google Scholar 

  • Makundi WR, Sathaye JA (2004) GHG mitigation potential and cost in tropical forestry-relative role for agroforestry. Environ Develop Sustain 6:235–260

    Article  Google Scholar 

  • Mangalassery S, Dayal D, Meena SL, Ram B (2014) Carbon sequestration in agroforestry and pasture systems in arid northwestern India. Current Sci 107:8–25

    Google Scholar 

  • Matocha J, Schroth G, Hills T, Hole D (2012) Integrating climate change adaptation and mitigation through agroforestry and ecosystem conservation. In: Nair PKR, Garrity D (eds) Agroforestry-the future of global land use. Springer, Dordrecht, pp 105–126

    Chapter  Google Scholar 

  • May P, Boyd E, Chang M, Veiga Neto F (2005) Incorporating sustainable development into carbon forest projects in Brazil and Bolivia. Estudos Sociedade e Agricultura 1:5–50

    Google Scholar 

  • McDonagh JF, Thomsen TB, Magid J (2001) Soil organic matter decline and compositional change associated with cereal cropping in southern Tanzania. Land Degrad Develop 12:13–26

    Article  Google Scholar 

  • Ming TR, Liu W, Caillol S (2014) Fighting global warming by climate engineering: is the earth radiation management and the solar radiation management any option for fighting climate change? Renew Susta Energy Rev 12:792–834. doi:10.1016/j.rser.2013.12.032

    Article  Google Scholar 

  • Mol G, Keesstra S (2012) Soil science in a changing world. Current Opinion in Environ Sustainability 4:473–477. doi:10.1016/j.cosust.2012.10.013

    Article  Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agroforestry Sys 61:281–295

    Google Scholar 

  • Mukhopadhyay S, Masto SE, Cerdà A, Ram LC (2016) Rhizosphere soil indicators for carbon sequestration in a reclaimed coal mine spoil. Catena 141:100–108

    Article  CAS  Google Scholar 

  • Muñoz-Rojas M, Jordán A, Zavala LM, De la Rosa D, Abd-Elmabod SK, Anaya-Romero M (2015) Impact of land use and land cover changes on organic carbon stocks in mediterranean soils (1956–2007). Land Degrad Develop 26:168–179

    Article  Google Scholar 

  • Murthy IK, Gupta M, Tomar S, Munsi M, Tiwari R, Hegde GT, Ravindranath NH (2013) Carbon sequestration potential of agroforestry systems in India. J Earth Sci Climatic Change 1:1–7

    Google Scholar 

  • Musinguzi P, Ebanyat P, Tenywa JS, Basamba TA, Tenywa MM, Mubiru D (2015) Precision of farmer-based fertility ratings and soil organic carbon for crop production on a Ferralsol. Solid Earth 6:1063–1073. doi:10.5194/se-6-1063-2015

    Article  Google Scholar 

  • Mutuo PK, Cadisch G, Albrecht Palm CA, Verchot L (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutrient Cycling in Agroecosys 71:43–54

    Article  CAS  Google Scholar 

  • Nair PKR (2005) Agroforestry: trees in support of sustainable agriculture. In: Hillel H, Hatfield JL, Powlson DS, Rosenzweig C, Scow KM, Singer MJ, Sparks DL (eds) Encyclopedia of soils in the environment, Vo1. 1. Elsevier, London, pp 35–44

    Chapter  Google Scholar 

  • Nair PKR (2012) Carbon sequestration studies in agroforestry systems: a reality-check. Agroforestry Sys 86:243–253

    Article  Google Scholar 

  • Nair PKR, Nair VD (2014) ‘Solid–fluid–gas’: the state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Current Opinion Environ Sustain 6:22–27

    Article  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009a) Agroforestry as a strategy for carbon sequestration. J Plant Nutri Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Haile SG (2009b) Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environ Sci Pol 12:1099–1111

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Advance Agron 108:237–307

    Article  CAS  Google Scholar 

  • Negash M, Kanninen M (2015) Modeling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach. Agri Ecosy Environ 203:147–155

    Article  Google Scholar 

  • Nepstad DC, De Carvalhot CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    Article  CAS  Google Scholar 

  • Newaj R, Dhyani SK (2008) Agroforestry for carbon sequestration: scope and present status. Indian journal of agroforestry 10:1–9

    Google Scholar 

  • Novara A, Gristina L, Guaitoli F, Santoro A, Cerdà A (2013) Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 4:255–262

    Article  Google Scholar 

  • Novara A, Rühl J, La Mantia T, Gristina L, La Bella S, Tuttolomondo T (2015) Litter contribution to soil organic carbon in the processes of agriculture abandon. Solid Earth 6:425–432. doi:10.5194/se-6-425-2015

    Article  Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agri Ecosys Environ 104:359–377. doi:10.1016/j.agee.2004.04.001

    Article  CAS  Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM, Kass DCL, Schlönvoigt AM, Thevathasan NV (2006) Soil carbon dynamics and residue stabilization in a costa Rican and southern Canadian alley cropping system. Agroforestry Sys 68:27–36

    Article  Google Scholar 

  • Ong CK, Black CR, Muthuri CW (2006) Modifying forestry and agroforestry to increase water productivity in the semi-arid tropics. CAB reviews. Perspectives in Agriculture, Veterinary Science, Nutrition Natural Resour 65:1–19

    Google Scholar 

  • Ono K, Mano M, Han GH, Nagai H, Yamada T, Kobayashi Y, Miyata A, Inoue Y, Lal R (2015) Environmental controls on fallow carbon dioxide flux in a single-crop rice paddy, Japan. Land Degrad Develop 26:331–339. doi:10.1002/ldr.2211

    Article  Google Scholar 

  • Otegbeye GO (2002) Report on Agroforestry and Land Management Practices, Diagnostics Survey of Katsina State of Nigeria. May 2000, Katsina State Agricultural and Rural Development Authority.Katsina. P. 89

  • Palma J, Herzog F, Reisner Y, Graves A, Burgess P, Keesman K, van Keulen H, Mayus M, De Filippi R, Bunce R (2007) Methodological approach for the assessment ofenvironmental effects of agroforestry at the landscape scale. Ecol Eng 29:450–462

    Article  Google Scholar 

  • Pandey DN (2007) Multifunctional agroforestry systems in India. Current Sci 4:455–463

    Google Scholar 

  • Pandey VC, Sahu N, Behera SK, Singh N (2016) Carbon sequestration in fly ash dumps: comparative assessment of three plant association. Ecol Eng 95:198–205

    Article  Google Scholar 

  • Parras-Alcántara L, Lozano-García B, Galán-Espejo A (2015) Soil organic carbon along an altitudinal gradient in the Despenaperros Natural Park, southern Spain. Solid Earth 1:125–134. doi:10.5194/se-6-125-2015

    Article  Google Scholar 

  • Pataki DE, Alig RJ, Fung AS, Golubiewski NE, Kennedy CA, McPherson EG, Norwalk DJ, Pouyat RV, Lankao PR (2006) Urban ecosystems and the North American carbon cycle. Glob Chang Biol 12:1–11

    Article  Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48:147–163

    Article  CAS  Google Scholar 

  • Peng F, Quangang Y, Xue X, Guo J, Wang T (2015) Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai-Tibet plateau, China. Solid Earth 6:303–310 . doi:10.5194/se-6-303-2015Cited 2 times

    Article  Google Scholar 

  • Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Chang 2:2–4

    Article  CAS  Google Scholar 

  • Pickett SA, Cadenasso ML, Grove JM, Groffman PM, Band LE, Boone CG, Burch WR, Jr Grimmond CSB, Hom J, Jenkins JC, Law NL, Nilon CH, Pouyat RV, Szlavecz K, Warren PS, Wilson MA (2008) Beyond urban legends: an emerging framework of urban ecology, as illustrated by the Baltimore ecosystem study. Biological Sci 58:1–12

    Google Scholar 

  • Pinkard EA, Battaglia M, Bruce J, Leriche A, Kriticos DJ (2010) Process-based modelling of the severity and impact of foliar pest attack on eucalypt plantation productivity under current and future climates. Forest Ecology Manag 4:839–847

    Article  Google Scholar 

  • Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201

    Article  CAS  Google Scholar 

  • Possu WB, Brandle JR, Domke GM, Schoeneberger M, Blankenship E (2016) Estimating carbon storage in windbreak trees on U.S. agricultural lands. Agroforest Syst 90:889. doi:10.1007/s10457-016-9896-0

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land use change: processes and potential. Glob Chang Biol 6:317–327

    Article  Google Scholar 

  • Post WM, Izaurralde C, Jastrow JD, McCarl BA, Amonette JE, Bailey VL, Jardine PM, West TO, Zhou J (2004) Enhancement of carbon sequestration in US soils. Biological Sci 54:895–908

    Google Scholar 

  • Pouyat R, Groffman P, Yesilonis I, Hernandez L (2002) Soil carbon pools and fluxes in urban ecosystems. Environ Pollution 116:S107–S118

    Article  CAS  Google Scholar 

  • Qian Y, Bandaranayake W, Parton WJ, Mecham B, Harivandi MA, Mosier AR (2003) Long-term effects of clipping and nitrogen management in turfgrass on soil organic carbon and nitrogen dynamics: the CENTURY model simulation. J Environ Quality 32:1694–1700

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Renard K, Foster G, Weesies G, McCool D, Yoder D (1997) Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation(RUSLE), v. Washington, D.C. US Department of Agriculture, USDA Agricultural HandbookNo.703

  • Rickman RW, Douglas CL, Albrech SL, Bundy LG, Berc JL (2001) CQUESTER: A model to estimate carbon sequestration in agricultural soils. J Soil Water Conser 56:237–243

    Google Scholar 

  • Rizvi SJH, Tahir M, Rizvi V, Kohli RK, Ansari A (1999) Allelopathic interactions in agroforestry systems. Crit Rev Plant Sci 19:773–796. doi:10.1080/07352689991309487

    Article  Google Scholar 

  • Rockström J (1997) On-farm agrohydrological analysis of the Sahelian yield crisis: rainfall partitioning, soil nutrients and water use efficiency of pearl millet. Stockholm University, Stockholm 62 pp.

    Google Scholar 

  • Rosenstock TS, Tully KT, Arias-Navarro C, Neufeldt H, Butterbach-Bahl K, Verchot LV (2014) Agroforestry with N2-fixing trees: sustainable development's friend or foe? Current Opinion Environ Sustain 6:15–21

    Article  Google Scholar 

  • Roshetko J, Lasco R, Angeles M (2007) Smallholder agroforestry systems for carbon storage. Mitigation Adaptation Strategies Global Change 2:219–242

    Article  Google Scholar 

  • Sá JCD, Séguy L, Tivet F, Lal R, Bouzinac S, Borszowskei PR, Briedis C, dos Santos JB, Hartman DC, Bertoloni CG, Rosa J, Friedrich T (2015) Carbon depletion by plowing and its restoration by no-till cropping systems in oxisols of subtropical and tropical agro-ecoregions in Brazil. Land Degrad Develop 26:531–543

    Article  Google Scholar 

  • Sanchez PA (2000) Linking climate change research with food security and poverty reduction in the tropics. Agri Ecosys Environ 82:371–383

    Article  Google Scholar 

  • Sarkhot DV, Comerford NB, Jokela EJ, Reeves JB III, Harris WG (2007) Aggregation and aggregate carbon in a forested southeastern coastal plain spodosol. Soil Sci Soci America J 71:1779–1787

    Article  CAS  Google Scholar 

  • Sathaye JA, Makundi WR, Andrasko K, Boer R, Ravindranath NH (2001) Carbon mitigation potential and costs of forestry options in Brazil, China, India, Indonesia,Mexico, the Philippines and Tanzania. Mitigation Adapt Strat Global Change 6:185–211

    Article  Google Scholar 

  • Schaffer B, Whiley AW, Searle C, Nissen RJ (1997) Leaf gas exchange, dry matter partitioning, and mineral element concentrations in mango as influenced by elevated atmospheric carbon dioxide and root restriction. J American Society Horti Sci 122:849–855

    Google Scholar 

  • Scheu S, Schauermann J (1994) Decomposition of roots and twigs: effects of wood type (beech and ash), diameter, site of exposure and macrofauna exclusion. Plant Soil 241:155–176. doi:10.1007/BF00033936

    Google Scholar 

  • Schoeneberger M, Bentrup G, de Gooijer H, Soolanayakanahally R, Sauer T, Brandle J, Zhou X, Current D (2012) Branching out: agroforestry as a climate change mitigation and adaptation tool for agriculture. J Soil Water Conser 67:128–136

    Article  Google Scholar 

  • Schroth G, D’Angelo SA, Teixeira WG, Haag D, Lieberei R (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. Forest Ecology Manag 163:131–150

    Article  Google Scholar 

  • Scialabba N, Muller-Lindenlauf M (2010) Organic agriculture and climate change. Renewable Agri Food Sys 2:158–169

    Article  Google Scholar 

  • Sedjo R, Brent S (2012) Carbon sequestration in forests and soils. Ann Review Economics 4:127–153

    Article  Google Scholar 

  • Sharrow SH, Ismail S (2004) Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Sys 60:123–130

    Article  Google Scholar 

  • Shazana MAR, Shamshuddin J, Fauziah CI, Syed OSR (2013) Alleviating the infertility of an acid sulphate soil by using ground basalt with or without lime and organic fertilizer under submerged conditions. Land Degrad Develop 24:129–140

    Article  Google Scholar 

  • Shepherd D, Montagnini F (2001) Carbon sequestration potential in mixed and pure tree plantations in the humid tropics. J Tropical Forest Sci 13:450–459

    Google Scholar 

  • Sileshi GW, Debusho LK, Akinnifesi FK (2012) Can integration of legume trees increase yield stability in rainfed maize cropping systems in southern Africa? Agron J 104:1392–1398

    Article  Google Scholar 

  • Smith TM, Cramer WP, Dixon RK, Leemans R, Neilson RP, Solomon AM (1993) The global terrestrial carbon cycle. Water Air Soil Pollution 70:19–37

    Article  CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Towprayoon S (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agri, Ecosys Environ 118:6–28

    Article  Google Scholar 

  • Smith P, Fang C, Dawson JJC, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Advances Agron 97:1–43

    Article  CAS  Google Scholar 

  • Smith P, Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E et al. (2014) Agriculture, forestry and other land use (AFOLU). In: (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA

  • Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustamante M, House JI, Sobocká J, Harper R, Pan G, West PC, Gerber JS, Clark JM, Adhya T, Scholes RJ, Scholes MC (2015) Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 1:665–685. doi:10.5194/soil-1-665-2015

    Article  Google Scholar 

  • Sollins P, Swanston C, Kramer M (2007) Stabilization and destabilization of soil organic matter-a new focus. Biogeochemistry 85:1–7

    Article  Google Scholar 

  • Soto-Pinto L, Anzueto M, Mendoza J, Ferrer GJ, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Sys 78:39–51

    Article  Google Scholar 

  • Srinivasarao C, Venkateswarlu B, Lal R, Singh AK, Kundu S, KPR V, Patel JJ, Patel MM (2014) Long-term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet-cluster bean-castor rotation in western India. Land Degrad Develop 25:173–183

    Article  Google Scholar 

  • Stavi I, Lal R (2013) Agroforestry and biochar to offset climate change: a review. Agron Sustain Develop 33:81–96

    Article  Google Scholar 

  • Steinbeiss S, Bessler H, Engels C, Temperton VM, Buchmanns N, Roscher C, Kreutziger Y, Baade J, Habekost M, Gleixner G (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Chang Biol 14:2937–2949

    Article  Google Scholar 

  • Straaten V, Corre O, Wolf MD, Tchienkoua K, Cuellar M, Matthews ER, Veldkamp E (2015) Conversion of lowland tropical forests to tree cash-crop plantations loses up to half of stored soil organic carbon. Proceedings National Academy Sci 112:9956–9960

    Article  CAS  Google Scholar 

  • Takimoto A, Nair PKR, Nair VD (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agri Ecosys Environ 125:159–166

    Article  CAS  Google Scholar 

  • Tesfaye MA, Bravo-Oviedo A, Bravo F, Kidane B, Bekele K, Sertse D (2014) Selection of tree species and soil management for simultaneous fuel wood production and soil rehabilitation in the Ethiopian central highlands. Land Degrad Develop 26:665–679

    Article  Google Scholar 

  • Thakur MP, Milcu A, Manning P, Niklaus PA, Roscher C et al (2015) Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob Chang Biol 21:4076–4085

    Article  Google Scholar 

  • Thevathasan NV, Gordon AM (2004) Ecology of tree intercropping systems in the north temperate region: experiences from southern Ontario, Canada. Agroforestry Sys 61:257–268

    Google Scholar 

  • Thornton PK, Bowen WT, Ravelo AC, Wilkens PW, Farmer G, Brock J, Brink JE (1997) Estimating millet production for famine early warning: an application of crop simulation modelling using satellite and ground-based data in Burkina Faso. Agri Forest Meteorol 83:95–112

    Article  Google Scholar 

  • Turgut B (2015) Comparison of wheat and safflower cultivation areas in terms of total carbon and some soil properties under semi-arid climate conditions. Solid Earth 6:719–725. doi:10.5194/se-6-719-2015

    Article  Google Scholar 

  • USDA-NRCS (2000) Growing Carbon: A New Crop that Helps Agricultural Producers and the Climate Too. United States Department of Agriculture Natural Resources Conservation Service

  • Verburg PH, Overmars KP (2009) Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc Ecol 24:1167–1181

    Article  Google Scholar 

  • Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Mastura SAS (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manag 30:391–405

    Article  Google Scholar 

  • Wasak K, Drewnik M (2015) Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland-a case study from the Tatra Mountains (Poland). Solid Earth 6:1103–1115. doi:10.5194/se-6-1103-2015

    Article  Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land-use change, and forestry. Published for the Intergovernmental Panel on Climate Change by Cambridge University Press, New York

    Google Scholar 

  • Watson-Lazowski A, Lin Y, Miglietta F, Edwards RJ, Chapman MA, Taylor G (2016) Plant adaptation or acclimation to rising CO2? Insight from first multigenerational RNA-Seq transcriptome. Glob Change Biol 22:3760–3773. doi:10.1111/gcb.13322

    Article  Google Scholar 

  • Webber H, Gaiser T, Ewert F (2014) What role can crop models play in supporting climate change adaptation decisions to enhance food security in sub-Saharan Africa? Agri Sys 127:161–177

    Article  Google Scholar 

  • Whitehead DC, Tinsley J (2006) The biochemistry of humus formation. J Sci Food Agri 14:849–857

    Article  Google Scholar 

  • World Bank (2015) Agricultural land (% of land area). Available at http://data.worldbank.org/indicator/AG.LND.AGRI.ZS/countries?display=graph (verified 16 September 2015)

  • Yu Y, Jia ZQ (2014) Changes in soil organic carbon and nitrogen capacities of Salix cheilophila Schneid. along a revegetation chronosequence in semi-arid degraded sandy land of the Gonghe Basin, Tibetan plateau. Solid Earth 5:1045–1054

    Article  Google Scholar 

  • Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, van Noordwijk M, Wang M (2016) Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987. doi:10.1038/srep29987

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farhat Abbas or Shah Fahad.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, F., Hammad, H.M., Fahad, S. et al. Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios—a review. Environ Sci Pollut Res 24, 11177–11191 (2017). https://doi.org/10.1007/s11356-017-8687-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8687-0

Keywords

Navigation