Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10243–10249 | Cite as

Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators

  • Nikos E. Papanikolaou
  • Argyro Kalaitzaki
  • Filitsa Karamaouna
  • Antonios Michaelakis
  • Vassiliki Papadimitriou
  • Vassilis Dourtoglou
  • Dimitrios P. Papachristos
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology


The insecticidal activity of a new nano-formulated natural pyrethrin was examined on the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), and the predators Coccinella septempunctata L. (Coleoptera: Coccinellidae) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae), in respect with the nano-scale potential to create more effective and environmentally responsible pesticides. Pyrethrin was nano-formulated in two water-in-oil micro-emulsions based on safe biocompatible materials, i.e., lemon oil terpenes as dispersant, polysorbates as stabilizers, and mixtures of water with glycerol as the dispersed aqueous phase. Laboratory bioassays showed a superior insecticidal effect of the pyrethrin micro-emulsions compared to two commercial suspension concentrates of natural pyrethrins against the aphid. The nano-formulated pyrethrins were harmless, in terms of caused mortality and survival time, to L3 larvae and four-instar nymphs of the predators C. septempunctata and M. pygmaeus, respectively. We expect that these results can contribute to the application of nano-technology in optimization of pesticide formulation, with further opportunities in the development of effective plant protection products compatible with integrated pest management practices.


Nano-technology Insecticides Aphids Predators Pyrethrins Micro-emulsions 



The study was funded by the Greek Secretary of Research and Technology within the frame of the common research project “Cooperation,” 09-ΣΥΝ-42-699. Authors would like to thank Maria Samara (Laboratory of Efficacy Evaluation of Pesticides, Benaki Phytopathological Institute) for her technical assistance.


  1. Awmack CS, Leather SR (2007) Growth and development. In van Emden HF, Harrington R (eds) Aphids as crop pests. CAB International, pp 135–151Google Scholar
  2. Benelli M, Leather SR, Francati S, Marchetti E, Dindo ML (2015) Effect of two temperatures on biological traits and susceptibility to a pyrethroid insecticide in an exotic and native coccinellid species. Bull Insect 68:23–29Google Scholar
  3. Blackman RL, Eastop VF (2000) Aphids on the world’s crops. An identification and information guide, Second edn. John Wiley & Sons, ChinchesterGoogle Scholar
  4. Bonato O, Couton L, Fargues J (2006) Feeding preference of Macrolophus caliginosus (Heteroptera: Miridae) on Bemisia tabaci and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). J Econ Entomol 99:1143–1151CrossRefGoogle Scholar
  5. Cho JR, Hong KJ, Yoo JK, Bang JR, Lee JO (1997) Comparative toxicity of selected insecticides to Aphis citricola, Myzus malisuctus (Homoptera: Aphididae), and the predator Harmonia axyridis (Coleoptera: Coccinellidae). J Econ Entomol 90:11–14CrossRefGoogle Scholar
  6. Cho JR, Kim J, Kim HS, Yoo JK (2002) Some biochemical evidence on the selective insecticide toxicity between the two aphids, Aphis citricola and Myzus malisuctus (Homoptera: Aphididae), and their predator, Harmonia axyridis (Coleoptera: Coccinellidae). J Asia Pac Entomol 5:49–53CrossRefGoogle Scholar
  7. Das RK, Sarma SJ, Brar SK, Verma M (2014) Nanoformulation of insecticides—novel products. J Biofertil Biopestici 5(1):e120. doi: 10.4172/2155-6202.1000e120 Google Scholar
  8. de Almeida VR, Giongo JL, Bolzan LP, Côrrea MS, Fausto VP, dos Santos Alves CF, Lopes LQS, Boligon AA, Athayde ML, Moreira AP, Brandelli A, Raffin RP, Santos RCV, Brandelli A (2015) Antimicrobial activity of nanostructured Amazonian oils against Paenibacillus species and their toxicity on larvae and adult worker bees. J Asia Pac Entomol 18:205–210CrossRefGoogle Scholar
  9. Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  10. Desneux N, Wajnberg W, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vasquez CA, González-Cabrera J, Ruescas DC, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneza A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215CrossRefGoogle Scholar
  11. Devonshire AL, Field LM, Foster SP, Moores GD, Williamson MS, Blackman RL (1998) The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae. Phil Trans R Soc Lond B 353:1677–1684CrossRefGoogle Scholar
  12. Ghosh S, Bhowmick DN, Pratap AP (2010) Application of neem and Karanjia oils as natural pesticide microemulsion systems. Tens Surf Deterg 47:369–375CrossRefGoogle Scholar
  13. Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N (2013) Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J Nanosci Nanotechnol 13:114–122CrossRefGoogle Scholar
  14. Hitmi A, Coudret A, Barthomeuf C (2000) The production of pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Crit Rev Biochem Mol 35:317–337CrossRefGoogle Scholar
  15. Hodek I, van Emden HF, Honěk A (2012) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-BlackwellGoogle Scholar
  16. IRAC (nd) database <>
  17. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66CrossRefGoogle Scholar
  18. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modelling. Crit Rev Env Sci Tec 43:1823–1867CrossRefGoogle Scholar
  19. Kalaitzaki A, Papanikolaou NE, Karamaouna F, Dourtoglou V, Xenakis A, Papadimitriou V (2015) Biocompatible colloidal dispersions as potential formulations of natural pyrethrins: a structural and efficacy study. Langmuir 31(21):5722–5730. doi: 10.1021/acs.langmuir.5b00246 CrossRefGoogle Scholar
  20. Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4:63–84Google Scholar
  21. Kraiss H, Cullen EM (2008) Efficacy and nontarget effects of reduced-risk insecticides on Aphis glycines (Hemiptera: Aphididae) and its biological control agent Harmonia axyridis (Coleoptera: Coccinellidae). J Econ Entomol 101:391–398CrossRefGoogle Scholar
  22. Li J, Jongsma MA, Wang CY (2014) Comparative analysis of pyrethrin content by mass selection, family selection and polycross in pyrethrum [Tanacetum cinerariifolium (Trevir.) Sch.Bip.] populations. Ind Crop Prod 53:268–273CrossRefGoogle Scholar
  23. Maselou DA, Perdikis DC, Sabelis MW, Fantinou AA (2014) Use of plant resources by an omnivorous predator and the concequences for effective predation. Biol Control 79:92–100CrossRefGoogle Scholar
  24. Michaud JP (2012) Coccinellids in biological control. In Hodek I, van Emden HF, Honěk A (eds) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-Blackwell, pp 488–519Google Scholar
  25. Mizell RF, Schiffhauer DE (1990) Effects of pesticides on pecan aphid predators Chrysoperla rufilabris (Neuroptera: Chrysopidae), Hippodamia convergens, Cycloneda sanguinea (L.), Olla v-nigrum (Coleoptera: Coccinellidae), and Aphelinus perpallidus (hymenoptera: Encyrtidae). J Econ Entomol 83:1806–1812CrossRefGoogle Scholar
  26. Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71CrossRefGoogle Scholar
  27. Obrycki JJ, Kring TJ (1998) Predaceous coccinellids in biological control. Annu Rev Entomol 43:295–321CrossRefGoogle Scholar
  28. Papanikolaou NE, Milonas PG (2016) Aphidophagous ladybird beetles as biological control agents. In Travlos, IS, Bilalis D, Chachalis D (eds) Weed and Pest Control: Molecular Biology, Practices and Environmental Impact. Nova Science Publishers Inc, pp 143–156Google Scholar
  29. Perdikis DC, Lykouressis DP (2004) Myzus persicae (Homoptera: Aphididae) as a suitable prey for Macrolophus pygmaeus (Hemiptera: Miridae) population increase on pepper plant. Environ Entomol 33:499–505CrossRefGoogle Scholar
  30. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293CrossRefGoogle Scholar
  31. Sarker DK (2005) Engineering of nanoemulsions for drug delivery. Curr Drug Deliv 2:297–310CrossRefGoogle Scholar
  32. Schmuck R, Candolfi MP, Kleiner R, Mead-Briggs M, Moll M, Kemmeter F, Jans D, Waltersdorfer A, Wilhelmy H (2000) A laboratory test system for assessing effects of plant protection products on the plant dwelling insect Coccinella septempunctata L. (Coleoptera: Coccinellidae). In Candolfi MP, Blumel S, Forster R (eds.), Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative, pp. 45–56Google Scholar
  33. Song S, Liu X, Jiang J, Qian Y, Zhang N, Wu Q (2009) Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf A Physicochem Eng Asp 350:57–62CrossRefGoogle Scholar
  34. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J. Colloid Interface Sci 314:230–235CrossRefGoogle Scholar
  35. Xu J, Fan QJ, Yin ZQ et al (2010) The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Vet Parasitol 169:399–403CrossRefGoogle Scholar
  36. Zappalá L, Biondi A, Alma A et al (2013) Natural enemies of the south American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J Pest Sci 86:635–647CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nikos E. Papanikolaou
    • 1
  • Argyro Kalaitzaki
    • 2
    • 3
  • Filitsa Karamaouna
    • 4
  • Antonios Michaelakis
    • 1
  • Vassiliki Papadimitriou
    • 2
  • Vassilis Dourtoglou
    • 5
  • Dimitrios P. Papachristos
    • 1
  1. 1.Department of Entomology and Agricultural ZoologyBenaki Phytopathological InstituteKifisiaGreece
  2. 2.Institute of Biology, Medicinal Chemistry and BiotechnologyNational Hellenic Research FoundationAthensGreece
  3. 3.MTM Research Center, School of Science and TechnologyÖrebro UniversityÖrebroSweden
  4. 4.Department of Pesticides’ Control and PhytopharmacyBenaki Phytopathological InstituteKifisiaGreece
  5. 5.VIORYL S.A.AfidnesGreece

Personalised recommendations