Electrochemical anodization of graphite oxide-TiO2 nanotube composite for enhanced visible light photocatalytic activity

Abstract

The electrochemical anodization method was used to dope graphite oxide (GO) onto TiO2 nanotubes (TNTs). This study focused on enhancement of the photocatalytic activity of TNTs in the visible light region. In this study, we have checked the effect of different GO concentrations and effect of GO doping time on photocatalytic efficiency of composite. The photocatalytic activity of the GO-TNT composite was tested by degradation of an organic compound. The organic compound was most severely degraded (95%) when the GO-TNT catalyst was doped at an anodization of 60 V for 13 min and GO concentration of 0.25 g L−1. This degradation was 5.6 times higher than that of bare TiO2. The as-prepared catalyst was characterized using FE-SEM, XRD, AES, PL, UV-Vis DRS, and Raman analysis. Recycling of the GO-TNT composite was also performed in order to examine the stability of the visible light catalyst. We observed that the doping of GO on the TNT surface can enhance the photocatalytic efficiency under visible light. Graphene acts as an electron transport; therefore, GO-TNTs were favorable for the separation of e and h+ charges. This promoted the formation of OH radicals, h+, and superoxides, all of which degrade organics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4:4174–4180

    Article  CAS  Google Scholar 

  2. Akhavan O (2015) Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81:158–166

    Article  CAS  Google Scholar 

  3. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113:20214–20220

    Article  CAS  Google Scholar 

  4. Akhavan O, Ghaderi E (2013a) Differentiation of human neural stem cells into neural networks on graphene nanogrids. J Mater Chem B 1:6291–6301

    Article  CAS  Google Scholar 

  5. Akhavan O, Ghaderi E (2013b) Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons. Nanoscale 5:10316–10326

    Article  CAS  Google Scholar 

  6. Akhavan O, Abdolahad M, Esfandiar A, Mohatashamifar M (2010) Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C 114:12955–12959

    Article  CAS  Google Scholar 

  7. Akhavan O, Ghaderi E, Shirazian SA (2015) Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors. Colloid Surf B-Biointerfaces 126:313–321

    Article  CAS  Google Scholar 

  8. Akhavan O, Saadati M, Jannesari M (2016) Graphene jet nanomotors in remote controllable self-propulsion swimmers in pure water. Nano Lett 16:5619–5630

    Article  CAS  Google Scholar 

  9. Andriantsiferana C, Mohamed EF, Delmas H (2015) Sequential adsorption-photocatalytic oxidation process for wastewater treatment using a composite material TiO2/activated carbon. Environ Eng Res 20:181–189

    Article  Google Scholar 

  10. Birben NC, Tomruk A, Bekbolet M (2016) The role of visible light active TiO2 specimens on the solar photocatalytic disinfection of E. coli Environ Sci Poll Res:1–10

  11. Chequer FMD, de Oliveira DP, Ferraz ERA, de Oliveira GAR, Cardoso JC, Zanoni MVB (2013) Textile dyes: dyeing process and environmental impact. INTECH Open Access Publisher, Croatia

    Google Scholar 

  12. Choi W-Y, Lee Y-W, Kim J-O (2011) Factors affecting preparation of photocatalytic TiO2 metal membrane with reactive nano-structured tubes. Desalin Water Treat 34:229–233

    Article  CAS  Google Scholar 

  13. de Vidales JM et al (2016) Photoelectrocatalytic oxidation of methyl orange on a TiO2 nanotubular anode using a flow cell. Chem Eng Technol 39:135–141

    Article  Google Scholar 

  14. Dominguez S et al. (2016) Magnetically recoverable TiO2-WO3 photocatalyst to oxidize bisphenol A from model wastewater under simulated solar light Environ Sci Poll Res:1–10

  15. Duo F, Wang Y, Fan C, Mao X, Zhang X, Wang Y, Liu J (2015) Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity. Mater Charact 99:8–16

    Article  CAS  Google Scholar 

  16. El-Kacemi S, Zazou H, Oturan N, Dietze M, Hamdani M, Es-Souni M, Oturan MA (2016) Nanostructured ZnO-TiO2 thin film oxide as anode material in electrooxidation of organic pollutants. Application to the removal of dye Amido black 10B from water Environ Sci Pollution Res:1–8

  17. Galindo C, Jacques P, Kalt A (2001) Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere 45:997–1005

    Article  CAS  Google Scholar 

  18. Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6:183–191

    Article  CAS  Google Scholar 

  19. Gobal F, Faraji M (2015) Electrochemical synthesis of reduced graphene oxide/TiO2 nanotubes/Ti for high-performance supercapacitors. Ionics 21:525–531

    Article  CAS  Google Scholar 

  20. Grimes CA, Mor GK (2009) TiO2 nanotube arrays: synthesis, properties, and applications. Springer Science & Business Media, Germany

    Google Scholar 

  21. Jo W-K, Kim J-T (2008) Photocatalysis of low concentration of gaseous-phase benzene using visible-light irradiated N-doped and S-doped titanium dioxide. Environ Eng Res 13:171–176

    Article  Google Scholar 

  22. Khalid N, Ahmed E, Hong Z, Sana L, Ahmed M (2013) Enhanced photocatalytic activity of graphene–TiO2 composite under visible light irradiation. Curr Appl Phys 13:659–663

    Article  Google Scholar 

  23. Kim S-P, Kim J-O (2015) Photoelectrocatalytic oxidation of methyl orange on a TiO2 nanotubular anode using a flow cell treat:1–7

  24. Kim TJ, Kim WJ, Kim SW (2010) Production method of titanium dioxide (TiO2) photocatalyst and TiO2 photocatalyst produced by the same. Google Patents

  25. Lai Y, Sun L, Chen Y, Zhuang H, Lin C, Chin JW (2006) Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J Electrochem Soc 153:D123–D127

    Article  CAS  Google Scholar 

  26. Lee WH, Lai CW, Hamid SBA (2015) One-step formation of WO3-loaded TiO2 nanotubes composite film for high photocatalytic performance. Materials 8:2139–2153

    Article  CAS  Google Scholar 

  27. Li S, Ma Z, Zhang J, Wu Y, Gong Y (2008) A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides. Catal Today 139:109–112

    Article  CAS  Google Scholar 

  28. Li H, Xia Z, Chen J, Lei L, Xing J (2015) Constructing ternary CdS/reduced graphene oxide/TiO2 nanotube arrays hybrids for enhanced visible-light-driven photoelectrochemical and photocatalytic activity. Appl Catal B-Environ 168:105–113

    Google Scholar 

  29. Lingappan N, Gal Y-S, Lim KT (2013) Synthesis of reduced graphene oxide/polypyrrole conductive composites. Mol Cryst Liquid Cryst 585:60–66

    Article  CAS  Google Scholar 

  30. Liu C, Teng Y, Liu R, Luo S, Tang Y, Chen L, Cai Q (2011) Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application. Carbon 49:5312–5320

    Article  CAS  Google Scholar 

  31. Meidanchi A, Akhavan O (2014) Superparamagnetic zinc ferrite spinel–graphene nanostructures for fast wastewater purification. Carbon 69:230–238

    Article  CAS  Google Scholar 

  32. Mendoza JA, Lee DH, Kang J-H (2016) Photocatalytic removal of NOx using TiO2–coated zeolite. Environ Eng Res 21:291–296

    Article  Google Scholar 

  33. Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AM (2012) Design of graphene-based TiO2 photocatalysts—a review. Environ Sci Pollution Res 19:3676–3687

    Article  CAS  Google Scholar 

  34. Oh W-C (2008) Synthesis and characterization of Fe-containing AC/TiO2 composites and their photodegradation effect for the piggery waste. Environ Eng Res 13:85–92

    Article  Google Scholar 

  35. Oh W, Park T (2007) Comparative analysis of the physical properties and photocatalytic effects for C/TiO2 complexes derived from titanium n-butoxide. Environ Eng Res –Seoul 12:218

    Article  Google Scholar 

  36. Oseghe EO, Ndungu PG, Jonnalagadda SB (2015) Synthesis of mesoporous Mn/TiO2 nanocomposites and investigating the photocatalytic properties in aqueous systems. Environ Sci Pollution Res 22:211–222

    Article  CAS  Google Scholar 

  37. Pandurangan A, Kamala P, Uma S, Palanichamy M, Murugesan V (2001) Degradation of basic yellow auramine OA textile dye by semiconductor photocatalysis. Indian J Chem Technol 8:496–499

    CAS  Google Scholar 

  38. Pfuch A et al. (2013) Photochemical activity of TiO2 nanotubes. In: SPIE OPTO. Int Soc Opt Photonics, 86260–86266

  39. Posa VR, Annavaram V, Koduru JR, Bobbala P, Somala AR (2016) Preparation of graphene–TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation. J Exp Nanosci 11:722–736

    Article  CAS  Google Scholar 

  40. Raghavan N, Thangavel S, Venugopal G (2015) Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites. Mater Sci Semicond Process 30:321–329

    Article  CAS  Google Scholar 

  41. Ribao P, Rivero MJ, Ortiz I (2016) TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid Environ Sci Poll Res:1–10

  42. Rivas J, Encinas Á, Beltrán F, Graham N (2011) Application of advanced oxidation processes to doxycycline and norfloxacin removal from water. J Environ Sci Health, Part A 46:944–951

    Article  CAS  Google Scholar 

  43. Shih Y-H, Lin C-H (2012) Effect of particle size of titanium dioxide nanoparticle aggregates on the degradation of one azo dye. Environ Sci Poll Res 19:1652–1658

    Article  CAS  Google Scholar 

  44. Shukla R, Madras G (2014) Cyclic reaction network modeling for the kinetics of photoelectrocatalytic degradation. J Environ Chem Eng 2:780–787

    Article  CAS  Google Scholar 

  45. Slokar YM, Le Marechal AM (1998) Methods of decoloration of textile wastewaters. Dyes Pigment 37:335–356

    Article  CAS  Google Scholar 

  46. Song P, Zhang X, Sun M, Cui X, Lin Y (2012) Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Nanoscale 4:1800–1804

    Article  CAS  Google Scholar 

  47. Sun J et al (2015) Controllable fabrication of transparent macroporous graphene thin films and versatile applications as a conducting platform. Adv Funct Mater 25:4334–4343

    Article  CAS  Google Scholar 

  48. Thien GS et al. (2014) Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed 001 facets and its photoelectrochemical response Int J Photoenergy 2014

  49. Veisi F, Zazouli MA, Ebrahimzadeh MA, Charati JY, Dezfoli AS (2016) Photocatalytic degradation of furfural in aqueous solution by N-doped titanium dioxide nanoparticles. Environ Sci Poll Res 23:21846–21860

    Article  CAS  Google Scholar 

  50. Wang C, Meng D, Sun J, Memon J, Huang Y, Geng J (2014) Graphene wrapped TiO2 based catalysts with enhanced photocatalytic activity Adv Mater Interfaces 1

  51. Wongaree M, Chiarakorn S, Chuangchote S, Sagawa T (2016) Photocatalytic performance of electrospun CNT/TiO2 nanofibers in a simulated air purifier under visible light irradiation. Environ Sci Poll Res 23:21395–21406

    Article  CAS  Google Scholar 

  52. Wu T, Cai X, Tan S, Li H, Liu J, Yang W (2011) Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chem Eng J 173:144–149

    Article  CAS  Google Scholar 

  53. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796

    Article  CAS  Google Scholar 

  54. Yang M-Q, Zhang N, Xu Y-J (2013) Synthesis of fullerene–, carbon nanotube–, and graphene–TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS App Mater Interfaces 5:1156–1164

    Article  CAS  Google Scholar 

  55. Zhou K, Zhu Y, Yang X, Jiang X, Li C (2011) Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J Chem 35:353–359

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2016R1A2A1A05005388).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong-Oh Kim.

Additional information

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Park, K., Kim, S. et al. Electrochemical anodization of graphite oxide-TiO2 nanotube composite for enhanced visible light photocatalytic activity. Environ Sci Pollut Res 26, 1072–1081 (2019). https://doi.org/10.1007/s11356-017-8571-y

Download citation

Keywords

  • Graphite oxide
  • TiO2 nanotubes
  • Photocatalyst
  • Anodization
  • Visible light
  • Organic degradation