Environmental Science and Pollution Research

, Volume 24, Issue 10, pp 9350–9360 | Cite as

The effects of endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion uptake and the expression of three transporter family genes after cadmium exposure

  • Fengshan Pan
  • Sha Luo
  • Jing Shen
  • Qiong Wang
  • Jiayuan Ye
  • Qian Meng
  • Yingjie Wu
  • Bao Chen
  • Xuerui Cao
  • Xiaoe Yang
  • Ying FengEmail author
Research Article


A hydroponic experiment was conducted to investigate the effects of an endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion accumulation, chlorophyll concentration, and the expression of three metal transporter families, zinc-regulated transporters, iron-regulated transporter-like protein (ZIP); natural resistance-associated macrophage protein; and heavy metal ATPase (HMA) at different Cd treatment levels. The results showed that at relatively low Cd conditions (≤25 μM), SaMR12 demonstrated a 19.5–27.5% increase in Fe, a 46.7–90.7% increase in Zn, and a 7.9–43.7% increase in Cu content in the shoot and elevated expression of SaIRT1, SaZIP3, SaHMA2, and SaNramp3 in the shoot and SaZIP1, SaHMA2, SaNramp1, and SaNramp3 in the root. At high Cd conditions (100 and 400 μM), SaMR12 demonstrated a 16.4–18.5% increase in leaf chlorophyll concentration, a 18.9–23.2% increase in Fe, and a 15.4–17.5% increase in Mg content in the shoot and elevated expression of SaZIP3, SaNramp6, SaHMA2, and SaHMA3 in the shoot and SaZIP3, SaNarmp1, SaNarmp3, and SaNarmp6 in the root. These results indicated that SaMR12 can elevate essential metal ion uptake and regulate the expression of transport genes to promote plant growth and enhance Cd tolerance and uptake to improve Cd accumulation up to 118–130%.


Plant growth promoting bacteria Hyperaccumulator Cd Fe Chlorophyll ZIP HMA NRAMP 



This research was supported by the Zhejiang Provincial Natural Science Foundation of China (LY15D010002), the Fundamental Research Funds for the Central Universities (2016FZA6006), and the National Key Research and Development Projects of China (2016YFD0800801).

Supplementary material

11356_2017_8565_MOESM1_ESM.pdf (910 kb)
ESM (PDF 909 kb)


  1. Abadia J (1992) Leaf responses to Fe deficiency—a review. J Plant Nutr 15:1699–1713CrossRefGoogle Scholar
  2. Borisev M, Pajevic S, Nikolic N, Orlovic S, Zupunski M, Pilipovic A, Kebert M (2016) Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L. Int J Phytoremediat 18:164–170CrossRefGoogle Scholar
  3. Chao DY, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, Yakubova E, Salt DE (2012) Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genet 8:e10029239CrossRefGoogle Scholar
  4. Chen B, Shen JG, Zhang XC, Pan FS, Yang XE, Feng Y (2014a) The endophytic bacterium, Sphingomonas SaMR12, Improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS ONE 9:e106826CrossRefGoogle Scholar
  5. Chen B, Zhang YB, Rafiq MT, Khan KY, Pan FS, Yang XE, Feng Y (2014b) Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: Effects on plant growth and root exudates. Chemosphere 117:367–373CrossRefGoogle Scholar
  6. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719CrossRefGoogle Scholar
  7. Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116:1063–1072CrossRefGoogle Scholar
  8. Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357CrossRefGoogle Scholar
  9. Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. B BA-Mol Cell Res. 1763(7):711–722Google Scholar
  10. Fodor F, Gaspar L, Morales F, Gogorcena Y, Lucena JJ, Cseh E, Kropfl K, Abadia J, Sarvari E (2005) Effects of two iron sources on iron and cadmium allocation in poplar (Populus alba) plants exposed to cadmium. Tree Physiol 25:1173–1180CrossRefGoogle Scholar
  11. Gao J, Sun L, Yang XE, Liu JX (2013) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS ONE 8:e64643CrossRefGoogle Scholar
  12. Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut R 20:2150–2161CrossRefGoogle Scholar
  13. Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kraemer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:344–391CrossRefGoogle Scholar
  14. He HD, Ye ZH, Yang DJ, Yan JL, Xiao L, Zhong T, Yuan M, Cai XD, Fang ZQ, Jing YX (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965CrossRefGoogle Scholar
  15. Huang X, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463CrossRefGoogle Scholar
  16. Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339CrossRefGoogle Scholar
  17. Jia L, He XY, Chen W, Liu ZL, Huang YQ, Yu S (2013) Hormesis phenomena under Cd stress in a hyperaccumulator-Lonicera japonica Thunb. Ecotoxicology 22:476–485CrossRefGoogle Scholar
  18. Jin XF, Yang XE, Islam E, Liu D, Mahmood Q (2008) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mater 156:387–397CrossRefGoogle Scholar
  19. Leung HM, Wang ZW, Ye ZH, Yung KL, Peng XL, Cheung KC (2013) Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere 23:549–563CrossRefGoogle Scholar
  20. Liu XF, Supek F, Nelson N, Culotta VC (1997) Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 272:11763–11769CrossRefGoogle Scholar
  21. Li DD, Xu XM, Hu XQ, Liu QG, Wang ZC, Zhang HZ, Wang H, Wei M, Wang HZ, Liu HM, Li CG (2015) Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa. Front Plant Sci 1149:1–15Google Scholar
  22. Long XX, Chen XM, Chen YG, Wong Jonathan W, Wei ZB, Wu QT (2011) Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J Microbiol Biotechnol 27:1197–1207CrossRefGoogle Scholar
  23. Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753CrossRefGoogle Scholar
  24. Ma Y, Oliveira RS, Nai FJ, Rajkumar M, Luo YM, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ 156:62–69Google Scholar
  25. Menguer PK, Farthing E, Peaston KA, Ricachenevsky FK, Fett JP, Williams LE (2013) Functional analysis of the rice vacuolar zinc transporter OsMTP1. J Exp Bot 64:2871–2883CrossRefGoogle Scholar
  26. Pan FS, Meng Q, Wang Q, Luo S, Chen B, Kiran YK, Yang XE, Feng Y (2016) Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance. Chemosphere 154:358–366CrossRefGoogle Scholar
  27. Pence NS, Larsen PB, Ebbs SD, Letham D, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960CrossRefGoogle Scholar
  28. Plaza S, Tearall KL, Zhao F, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728CrossRefGoogle Scholar
  29. Pottier M, Oomen R, Picco C, Giraudat J, Scholz-Starke J, Richaud P, Carpaneto A, Thomine S (2015) Identification of mutations allowing natural resistance associated macrophage proteins (NRAMP) to discriminate against cadmium. Plant J 4:625–637CrossRefGoogle Scholar
  30. Ra K (2010) Determination of Mg isotopes in chlorophyll a for marine bulk phytoplankton from the northwestern Pacific Ocean. Geochem Geophy Geosy 11(12):1–10CrossRefGoogle Scholar
  31. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194CrossRefGoogle Scholar
  32. Shanmugam V, Lo J, Yeh K (2013) Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Front Plant Sci 4:281CrossRefGoogle Scholar
  33. Song YF, Hudek L, Freestone D, Puhui J, Michalczyk A (2014) Comparative analyses of cadmium and zinc uptake correlated with changes in natural resistance-associated macrophage protein (NRAMP) expression in Solanum nigrum L. and Brassica rapa. Environ chem 11:653–660CrossRefGoogle Scholar
  34. Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695CrossRefGoogle Scholar
  35. Thomine S, Wang RC, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996CrossRefGoogle Scholar
  36. Tian SK, Lu LL, Zhang J, Wang K, Brown P, He ZL, Liang J, Yang XE (2011) Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere 84:63–69CrossRefGoogle Scholar
  37. Tiong J, McDonald G, Genc Y, Shirley N, Langridge P, Huang CY (2015) Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytol 207:1097–1109CrossRefGoogle Scholar
  38. Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233CrossRefGoogle Scholar
  39. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot-London 92:487–511CrossRefGoogle Scholar
  40. Yang XE, Long XX, Ye HB, He ZL, Stoffella PJ, Calvert DV (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil 259(1-2):181–189CrossRefGoogle Scholar
  41. Zhang X, Lin L, Chen M, Zhu Z, Yang W, Chen B, Yang X, An Q (2012) A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J Hazard Mater 229:361–370CrossRefGoogle Scholar
  42. Zhang XC, Lin L, Zhu ZQ, Yang XE, Wang YY, An QL (2013) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremediat 15:51–64CrossRefGoogle Scholar
  43. Zhao SP, Zhang YZ, Ye XZ, Zhang Q, Xiao WD (2015) Responses to cadmium stress in two tomato genotypes differing in heavy metal accumulation. Turkish J Bot 4:615–624CrossRefGoogle Scholar
  44. Zhang J, Zhang M, Jahidul IS, Tian SK, Song HY, Feng Y, Yang XE (2016) Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance. Planta 243:577–589CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource SciencesZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Agricultural Technology Extension Center of ShaoxingShaoxingPeople’s Republic of China

Personalised recommendations