Determination of glyphosate in surface water with high organic matter content

Abstract

In this paper, we investigate the sample preparation and analysis process in order to achieve adequate results for surface water collected from rivers that flow through swamps and are consequently rich in organic matter. We show that matrix effects in glyphosate determination can be reduced by optimizing sample volume, liquid chromatography (LC) mobile phase buffer concentration and pH as well as gradient speed. Also, aspects of derivatization procedure (borate buffer concentration, fluorenylmethyloxycarbonyl chloride concentration) and their influence on accuracy are considered in detail. We encountered a cross-talk effect in the mass spectra, interfering with quantization during analysis, which was removed by optimizing MS parameters. As a result it was demonstrated that isotope-labelled internal standard with just one 13C atom is sufficient for the analysis.

All these aspects were found to strongly impact the accuracy of the glyphosate determination but have received little or no attention in earlier works. We propose a reliable solid phase extraction and LC/ESI/MS/MS method for determination of glyphosate in organic-rich waters and demonstrate that LoD can be decreased by about two times using an ESI nebulizer with a modified design.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Alder L, Luderitz S, Lindtner K, Stan HJ (2004) The ECHO technique–the more effective way of data evaluation in liquid chromatography–tandem mass spectrometry analysis. J Chromatogr A 1058:67–79

    CAS  Article  Google Scholar 

  2. Benijts T, Dams R, Lambert W, De Leenheer A (2004) Countering matrix effects in environmental liquid chromatography–electrospray ionization tandem mass spectrometry water analysis for endocrine disrupting chemicals. J Chromatogr A 1029(1–2):153–159

    CAS  Article  Google Scholar 

  3. Berg T, Strand DH (2011) 13C labelled internal standards—A solution to minimize ion suppression effects in liquid chromatography–tandem mass spectrometry analyses of drugs in biological samples? J Chromatogr A 1218(52):9366–9374

    CAS  Article  Google Scholar 

  4. Bester K, Bordin G, Rodriguez A, Schimmel H, Pauwels J, Van Vyncht G (2001) How to overcome matrix effects in the determination of pesticides in fruit by HPLC-ESI-MS-MS Fresenius J Anal Chem 371(4):550–555.

  5. Chin C, Zhang ZP, Karnes HT (2004) A study of matrix effects on an LC/MS/MS assay for olanzapine and desmethyl olanzapine. J Pharmaceut Biomed 35(5):1149–1167

    CAS  Article  Google Scholar 

  6. Choi BK, Gusev AI, Hercules DM (1999) Postcolumn introduction of an internal standard for quantitative LC-MS analysis. Anal Chem 71(18):4107–4110

    CAS  Article  Google Scholar 

  7. EFSA (2015) EFSA Risk assessment: Glyphosate. European Food Safety Autority, Parma (Italy) 2015. Available:http://www.efsa.europa.eu/sites/default/files/corporate_publications/files/efsaexplainsglyphosate151112en.pdf (Last accessed 13.12.2015).

  8. Ghanem A, Bados P, Kerhoas L, Dubroca J, Einhorn J (2007) Glyphosate and AMPA analysis in sewage sludge by LC-ESI-MS/MS after FMOC derivatization on strong anion-exchange resin as solid support. Anal Chem 79(10):3794–3801

    CAS  Article  Google Scholar 

  9. Gosetti F, Mazzucco E, Zampieri D, Gennaro MC (2010) Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1217(25):3929–3937

    CAS  Article  Google Scholar 

  10. Hanke I, Singer H, Hollender J (2008) Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry: performance tuning of derivatization, enrichment and detection. Anal Bioanal Chem 391(6):2265–2276

    CAS  Article  Google Scholar 

  11. IARC (2015) IARC Monographs Volume 112: evaluation of five organophosphate insecticides and herbicides. World Health Organisation, International Agency for Research on Cancer, Lyon (France), 2015. Available from https://www.iarc.fr/en/media-centre/iarcnews/pdf/MonographVolume112.pdf (Last accessed: 13.12.2015).

  12. Ibáñez M, Pozo OJ, Sancho JV, López FJ, Hernández F (2005) Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry. J Chromatogr A 1081(2):145–155

    Article  Google Scholar 

  13. Karlsson KM, Spoof LEM, Meriluoto JAO (2005) Quantitative LC-ESI-MS analyses of microcystins and nodularin-R in animal tissue—Matrix effects and method validation. EnvironToxicol 20:381–389

    CAS  Google Scholar 

  14. Kawai S, Uno B, Tomita M (1991) Determination of glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid chromatography after derivatization with p-toluenesulphonyl chloride. J Chromatogr 540:411–415

    CAS  Article  Google Scholar 

  15. Kloepfer A, Quintana JB, Reemtsma T (2005) Operational options to reduce matrix effects in liquid chromatography-electrospray ionization-mass spectrometry analysis of aqueous environmental samples. J Chromatogr A 1067:153–160

    CAS  Article  Google Scholar 

  16. Kowal S, Balsaa P, Werres F, Schmidt TC (2009) Determination of the polar pesticide degradation product N,N-dimethylsulfamide in aqueous matrices by UPLC-ESI-MS/MS. Anal Bioanal Chem 395:1787–1794

    CAS  Article  Google Scholar 

  17. Kruve A, Künnapas A, Herodes K, Leito I (2008) Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry. J Chromatogr A 1187(1–2):58–66

    CAS  Article  Google Scholar 

  18. Kruve A, Leito I, Herodes K (2009) Combating matrix effects in LC/ESI/MS: The extrapolative dilution approach. Anal Chim Acta 651(1):75–80

    CAS  Article  Google Scholar 

  19. Kruve A, Herodes K, Leito I (2010) Optimization of electrospray interface and quadrupole ion trap mass spectrometer parameters in pesticide liquid chromatography/electrospray ionization mass spectrometry analysis. Rapid Commun Mass Sp 24(7):919–926

    CAS  Article  Google Scholar 

  20. Kruve A, Auling R, Herodes K, Leito I (2011) Study of liquid chromatography/electrospray ionization mass spectrometry matrix effect on the example of glyphosate analysis from cereals. Rapid Commun Mass Sp 25(21):3252–3258

    CAS  Article  Google Scholar 

  21. Kruve A, Leito I, Herodes K, Laaniste A, Lõhmus R (2012) Enhanced nebulization efficiency of electrospray mass spectrometry: improved sensitivity and detection limit. J Am Soc Mass Spectr 23(12):2051–2054

    CAS  Article  Google Scholar 

  22. Küsters M, Gerhartz M (2010) Enrichment and low-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after cleanup by cation exchange resin. J Sep Sci 33(8):1139–1146

    Google Scholar 

  23. Lee SJ, Park S, Choi JY, Shim JH, Shin EH, Choi JH, Kim ST, Abd El-Aty AM, Jin JS, Bae DW, Shin SC (2009) Multiresidue analysis of pesticides with hydrolyzable functionality in cooked vegetables by liquid chromatography tandem mass spectrometry. Biomed Chromatogr 23(7):719–731

    CAS  Article  Google Scholar 

  24. Liang HR, Foltz RL, Meng M, Bennett P (2003) Ionization enhancement in atmospheric pressure chemical ionization between target drugs and stable-isotope-labeled internal standards in quantitative liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Sp 17:2815–2821

    CAS  Article  Google Scholar 

  25. Licea-Perez H, Wang S, Szapacs ME, Yang E (2008) Development of a highly sensitive and selective UPLC/MS/MS method for the simultaneous determination of testosterone and 5α-dihydrotestosterone in human serum to support testosterone replacement therapy for hypogonadism. Steroids 73(6):601–610

    CAS  Article  Google Scholar 

  26. Lundgren LN (1986) A new method for the determination of glyphosate and (aminomethyl) phosphonic acid residues in soils. J Agric Food Chem 34:535–538

    CAS  Article  Google Scholar 

  27. Magnusson B, Örnemark U (1998) Eurachem guide: the fitness for purpose of analytical methods—a laboratory guide to method validation and related topics, 2nd ed. Eurachem, Teddington, available from www.eurachem.org

  28. Manini P, Andreoli R, Mutti A (2006) Application of liquid chromatography-mass spectrometry to biomonitoring of exposure to industrial chemicals. Toxicol Lett 162:202–210

    CAS  Article  Google Scholar 

  29. Mei H, Hsieh YS, Nardo C, Xu XY, Wang SY, Ng K, Korfmacher WA (2003) Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays: application to drug discovery. Rapid Commun Mass Sp 17:97–103

    CAS  Article  Google Scholar 

  30. Morin LP, Mess JN, Furtado M, Garofolo F (2011) Reliable procedures to evaluate and repair crosstalk for bioanalytical MS/MS assays. Bioanalysis 3(3):275–283

    CAS  Article  Google Scholar 

  31. Niessen WM, Manini P, Andreoli R (2006) Matrix effects in quantitative pesticide analysis using liquid chromatography-mass spectrometry. Mass Spectrom Rev 25(6):881–899

    CAS  Article  Google Scholar 

  32. Oss M, Kruve A, Herodes K, Leito I (2010) Electrospray ionization efficiency scale of organic compounds. Anal Chem 82(7):2865–2872

    CAS  Article  Google Scholar 

  33. Patsias J, Papadopoulou A, Papadopoulou-Mourkidou E (2001) Automated trace level determination of glyphosate and aminomethyl phosphonic acid in water by on-line anion-exchange solid-phase extraction followed by cation-exchange liquid chromatography and post-column derivatization. J Chromatogr 932:83–90

    CAS  Article  Google Scholar 

  34. Pizzutti IR, de Kok A, Hiemstra M, Wickert C, Prestes OD (2009) Method validation and comparison of acetonitrile and acetone extraction for the analysis of 169 pesticides in soya grain by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216(21):4539–4552

    CAS  Article  Google Scholar 

  35. Qian KQ, Tang T, Shi T, Wang F, Li J, Cao Y (2009) Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride. Anal Chim Acta 635(2):222–226

    CAS  Article  Google Scholar 

  36. Sanchis J, Kantiani LM, Rubio F, Ginebreda A, Fraile J, Garrido T, Farre M (2012) Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 402(7):2335–2345

    CAS  Article  Google Scholar 

  37. Sancho JV, Pozo OJ, López FJ, Hernández F (2002) Different quantitation approaches for xenobiotics in human urine samples by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun Mass Sp 16:639–645

    CAS  Article  Google Scholar 

  38. Stahnke H, Reemtsma T, Alder L (2009) Compensation of matrix effects by postcolumn infusion of a monitor substance in multiresidue analysis with LC-MS/MS. Anal Chem 81:2185–2192

    CAS  Article  Google Scholar 

  39. Stahnke H, Kittlaus S, Kempe G, Alder A (2012) Reduction of matrix effects in liquid chromatography–electrospray ionization–mass spectrometry by dilution of the sample extracts: how much dilution is needed? Anal Chem 84(3):1474–1482

    CAS  Article  Google Scholar 

  40. Stalikas CD, Konidari CN (2001) Analytical methods to determine phosphonic and amino acid group-containing pesticides. J Chromatogr A 907(1–2):1–19

    CAS  Article  Google Scholar 

  41. Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem 38(4):328–334

    CAS  Article  Google Scholar 

  42. Van De Steene JC, Mortier KA, Lambert WE (2006) Tackling matrix effects during development of a liquid chromatographic-electrospray ionisation tandem mass spectrometric analysis of nine basic pharmaceuticals in aqueous environmental samples. J Chromatogr A 1123(1):71–81

    CAS  Article  Google Scholar 

  43. Van Eeckhaut A, Lanckmans K, Sarre S, Smolders I, Michotte Y (2009) Validation of bioanalytical LC- MS/MS assays: evaluation of matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci 877(23):2198–2207

    CAS  Article  Google Scholar 

  44. Villagrasa M, Guillamón M, Eljarrat E, Barceló D (2007) Matrix effect in liquid chromatography–electrospray ionization mass spectrometry analysis of benzoxazinoid derivatives in plant materia. J Chromatogr A 1157:108–114

    CAS  Article  Google Scholar 

  45. Vreeken RJ, Speksnijder P, Bobeldijk-Pastorova I, Noij THM (1998) Selective analysis of the herbicides glyphosate and aminomethylphosphonic acid in water by on-line solid-phase extraction-high-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 794(1):187–199

    CAS  Article  Google Scholar 

  46. Zrostlikova J, Hajslova J, Poustka J, Begany P (2002) Alternative calibration approaches to compensate the effect of co–extracted matrix components in liquid chromatography–electrospray ionisation tandem mass spectrometry analysis of pesticide residues in plant materials. J Chromatogr A 973(1–2):13–26

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the grant No. 8373 from the Estonian Science Foundation, by PUT 34 from the Estonian Research Council, by the Estonian National Research and Infrastructure development programme of measure 2.3 “Promotion of development activities and innovation” (Regulation No. 34) funded by the Estonian Enterprise foundation and by the institutional research grant IUT21-2 from the Estonian Ministry of Education and Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anneli Kruve.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toss, V., Leito, I., Yurchenko, S. et al. Determination of glyphosate in surface water with high organic matter content. Environ Sci Pollut Res 24, 7880–7888 (2017). https://doi.org/10.1007/s11356-017-8522-7

Download citation

Keywords

  • Glyphosate
  • Matrix effect
  • Mass spectrometry
  • Electrospray ionization
  • Derivatization