Abstract
This study investigated the effect of selenate and selenite application on the distribution, transformation of selenium (Se) fractions in soil, as well as the accumulation and availability of Se in each part of wheat plants. A pot experiment was conducted using different concentrations of exogenous selenite or selenate (0.5, 1, 2.5, 5, and 10 mg Se kg−1 soil). Sequential extraction was used to determine the Se fractions in soil, and different models were used to study the behavior of Se in soil and its availability to wheat. Results showed that the distribution and availability of Se in soil and its accumulation in wheat affected both by Se concentrations and forms of exogenous Se. In selenite-treated soil, the proportion of exchangeable and carbonate-bound Se (EXC–Se) (21–42%) fraction increased compared to that in control (12%), while organic matter-bound Se (OM–Se) (23–33%) and Fe–Mn oxide-bound Se (FMO–Se) (11–15%) fractions decreased compare with those in control (37 and 32%, respectively). In selenate-treated soil, soluble-Se (SOL–Se) fraction (30–54%) increased and the OM–Se (9.8–20%) and FMO–Se (4.7–14.2%) fractions decreased compared with those in control. Residual Se (RES–Se) fraction was increased for selenite (7.4–13.4%) and selenate (12–20%) treatments compared with that in control (6.5%). In comparison with control, the available Se (SOL−Se + EXC−Se) fraction increased for both selenite (32–47%) or selenate (54–72%) treatments. Moreover, at the same rate of Se application, Se availability was higher in wheat grown in selenate-treated soils than that in selenite-treated soils. The redistribution index (U ts) of Se increased from 1 (in control) to 1.2–1.9 and 1.5–2 for selenite and selenate treatments, respectively; additionally, the mobility factor (MF) in selenate-treated soil was 40–90% higher than that in selenite-treated soil. Furthermore, relative bonding intensity (I R ) for both selenite (0.38–0.45) and selenate treatment (0.33–0.41) decreased compared with that in control (0.55). These differences indicated that selenite and selenate varied in terms of fixation capacities in soil, in transformation and distribution of Se in soil fractions, and in their availability to plants. The results of Michaelis–Menten equation demonstrated the high affinity of leaf to selenate, and the high affinity of roots and grains to selenite. Selenate was dominant in nearly all parts of wheat plants and in each application level. However, the affinity of selenite to wheat grains suggests that selenite is a useful Se fertilizer that must be considered in biofortification programs. In-depth studies at the pot and field scales by using different wheat varieties and application methods of Se in different ecological zones must be conducted to elucidate the mechanism and biochemical properties of Se in soil-plant system and ultimately produce Se-rich staple foods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abdu N, Agbenin JO, Buerkert A (2012) Fractionation and mobility of cadmium and zinc in urban vegetable gardens of Kano, northern Nigeria. Environ Monit Assess 184:2057–2066. doi:10.1007/s10661-011-2099-2
Alfthan G, Eurola M, Ekholm P et al (2015) Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: from deficiency to optimal selenium status of the population. J Trace Elem Med Biol 31:142–147. doi:10.1016/j.jtemb.2014.04.009
Arvy MP (1993) Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot 44:1083–1087. doi:10.1093/jxb/44.6.1083
Bañuelos GS, Lin Z-Q, Arroyo I, Terry N (2005) Selenium volatilization in vegetated agricultural drainage sediment from the San Luis drain, Central California. Chemosphere 60:1203–1213. doi:10.1016/j.chemosphere.2005.02.033
Bao S (2000) Analysis methods for soil agro-chemistry. China Agriculture Press, Beijing
Barrett J, Patterson C, Reilly C, Tinggi U (1989) Selenium in the diet of children with phenylketonuria. In: Southgate D, Johnson I, Fenwick G (eds) Nutrient availability: chemical and biological aspects. Royal Society of Chemistry, London, pp 281–283
Bolan N, Adriano D, Mahimairaja S (2004) Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Crit Rev Environ Sci Technol 34:291–338. doi:10.1080/10643380490434128
Borrill P, Connorton JM, Balk J et al (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:53. doi:10.3389/fpls.2014.00053
Broadley MR, White PJ, Bryson RJ et al (2006) Biofortification of UK food crops with selenium. Proc Nutr Soc 65:169–181. doi:10.1079/PNS2006490
Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367. doi:10.1007/s11104-005-5691-9
Chen Q, Shi W, Wang X (2010) Selenium speciation and distribution characteristics in the rhizosphere soil of Rice ( Oryza sativa L.) seedlings. Commun Soil Sci Plant Anal 41:1411–1425. doi:10.1080/00103624.2010.482164
Combs GF (2001) Selenium in global food systems. Br J Nutr 85:517–547. doi:10.1079/BJN2000280
Coppin F, Chabroullet C, Martin-Garin A et al (2006) Methodological approach to assess the effect of soil ageing on selenium behaviour: first results concerning mobility and solid fractionation of selenium. Biol Fertil Soils 42:379–386. doi:10.1007/s00374-006-0080-y
de Souza MP, Pilon-Smits EAH, Lytle CM et al (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian Mustard1. Plant Physiol 117:1487–1494. doi:10.1104/pp.117.4.1487
Eiche E, Bardelli F, Nothstein AK et al (2015) Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Sci Total Environ 505:952–961. doi:10.1016/j.scitotenv.2014.10.080
Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279. doi:10.1016/S1369-5266(03)00030-X
Fan J, Wang R, Hu H et al (2015) Transformation and bioavailability of selenate and selenite added to a Nicotiana tabacum L. planting soil. Commun Soil Sci Plant Anal 46:1362–1375. doi:10.1080/00103624.2015.1033544
Fellowes JW, Pattrick RAD, Boothman C et al (2013) Microbial selenium transformations in seleniferous soils. Eur J Soil Sci 64:629–638. doi:10.1111/ejss.12051
Fujita M, Ike M, Hashimoto R et al (2005) Characterizing kinetics of transport and transformation of selenium in water-sediment microcosm free from selenium contamination using a simple mathematical model. Chemosphere 58:705–714. doi:10.1016/j.chemosphere.2004.09.042
Goodson CC, Parker DR, Amrhein C, et al. (2003) Soil selenium uptake and root system development in plant taxa differing in Se-accumulating capability. 391–401. doi: 10.1046/j.1469-8137.2003.00781.x
Guerrero B, Llugany M, Palacios O, Valiente M (2014) Dual effects of different selenium species on wheat. Plant Physiol Biochem 83:300–307. doi:10.1016/j.plaphy.2014.08.009
Gusiatin ZM, Kulikowska D (2014) The usability of the IR, RAC and MRI indices of heavy metal distribution to assess the environmental quality of sewage sludge composts. Waste Manag 34:1227–1236. doi:10.1016/j.wasman.2014.04.005
Han FX, Su Y, Maruthi Sridhar BB, Monts DL (2004) Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil. Plant Soil 265:243–252. doi:10.1007/s11104-005-0975-7
Harada T, Takahashi Y (2008) Origin of the difference in the distribution behavior of tellurium and selenium in a soil-water system. Geochim Cosmochim Acta 72:1281–1294. doi:10.1016/j.gca.2007.12.008
Haug A, Graham RD, Christophersen OA, Lyons GH (2007) How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis 19:209–228. doi:10.1080/08910600701698986
Hawkesford MJ, Zhao F-J (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46:282–292. doi:10.1016/j.jcs.2007.02.006
Hawrylak-Nowak B, Matraszek R, Pogorzelec M (2015) The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol Plant. doi:10.1007/s11738-015-1788-9
Hopper J, Parker D (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210:199–207. doi:10.1023/A:1004639906245
Hu B, Liang D, Liu J et al (2014) Transformation of heavy metal fractions on soil urease and nitrate reductase activities in copper and selenium co-contaminated soil. Ecotoxicol Environ Saf 110:41–48. doi:10.1016/j.ecoenv.2014.08.007
Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492. doi:10.2134/jeq2001.302485x
Kamei-Ishikawa N, Tagami K, Uchida S (2007) Sorption kinetics of selenium on humic acid. J Radioanal Nucl Chem 274:555–561. doi:10.1007/s10967-006-6951-8
Keskinen R, Turakainen M, Hartikainen H (2010) Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant Soil 333:301–313. doi:10.1007/s11104-010-0345-y
Keskinen R, Yli-Halla M, Hartikainen H (2013) Retention and uptake by plants of added selenium in peat soils. Commun Soil Sci Plant Anal 44:3465–3482. doi:10.1080/00103624.2013.847955
Kieliszek M, Błazejak S (2013) Selenium: significance, and outlook for supplementation. Nutrition 29:713–718. doi:10.1016/j.nut.2012.11.012
Kikkert J, Berkelaar E (2013) Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Contam Toxicol 65:458–465. doi:10.1007/s00244-013-9926-0
Lee S, Woodard HJ, Doolittle JJ (2011) Selenium uptake response among selected wheat (Triticum aestivum) varieties and relationship with soil selenium fractions. Soil Sci Plant Nutr 57:823–832. doi:10.1080/00380768.2011.641909
Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102. doi:10.1111/j.1469-8137.2007.02343.x
Li J, Liang D, Qin S et al (2015a) Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Environ Sci Pollut Res Int 22:11076–11086. doi:10.1007/s11356-015-4344-7
Li YF, Zhao J, Li Y et al (2015b) The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in Qingzhen, Guizhou, China. Plant Soil 391:195–205. doi:10.1007/s11104-015-2418-4
Li Z, Man N, Wang S et al (2015c) Selenite adsorption and desorption in main Chinese soils with their characteristics and physicochemical properties. J Soils Sediments 15:1150–1158. doi:10.1007/s11368-015-1085-7
Liu X, Zhang S, Shan XQ, Christie P (2007) Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination. Ecotoxicol Environ Saf 68:305–313. doi:10.1016/j.ecoenv.2006.11.001
Liu X, Zhao Z, Hu C et al (2016) Effect of sulphate on selenium uptake and translocation in rape (Brassica napus L.) supplied with selenate or selenite. Plant Soil 399:295–304. doi:10.1007/s11104-015-2699-7
Longchamp M, Castrec-Rouelle M, Biron P, Bariac T (2015) Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem 182:128–135. doi:10.1016/j.foodchem.2015.02.137
Lu A, Zhang S, Shan X (2005) Time effect on the fractionation of heavy metals in soils. 125:225–234. doi: 10.1016/j.geoderma.2004.08.002
Lv Y, Yu T, Yang Z et al (2014) Constraint on selenium bioavailability caused by its geochemical behavior in typical Kaschin–Beck disease areas in Aba, Sichuan Province of China. Sci Total Environ 493:737–749. doi:10.1016/j.scitotenv.2014.06.050
Mazej D, Osvald J, Stibilj V (2008) Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. Food Chem 107:75–83. doi:10.1016/j.foodchem.2007.07.036
National Food Safety Standard of the People's Republic of China, “National Food Safety Standard Determination of Selenium in Foods, GB5009.93-2010”
Miretzky P, Avendaño MR, Muñoz C, Carrillo-Chavez A (2011) Use of partition and redistribution indexes for heavy metal soil distribution after contamination with a multi-element solution. J Soils Sediments 11:619–627. doi:10.1007/s11368-011-0343-6
Mora M, Durán P, Acuña J et al (2015) Improving selenium status in plant nutrition and quality. J Soil Sci Plant Nutr 15:486–503. doi:10.4067/S0718-95162015005000041
Moreno-Reyes R, Suetens C, Mathieu F et al (1998) Kashin–Beck Osteoarthropathy in rural Tibet in relation to selenium and iodine status. N Engl J Med 339:1112–1120. doi:10.1056/NEJM199810153391604
Nakamaru YM, Altansuvd J (2014) Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review. Chemosphere 111:366–371. doi:10.1016/j.chemosphere.2014.04.024
Pedrero Z, Madrid Y (2009) Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal Chim Acta 634:135–152. doi:10.1016/j.aca.2008.12.026
Peng Q, Guo L, Ali F et al (2016) Influence of Pak choi plant cultivation on Se distribution, speciation and bioavailability in soil. Plant Soil 403:331–342. doi:10.1007/s11104-016-2810-8
Poblaciones MJ, Rodrigo S, Santamaría O et al (2014) Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: from grain to cooked pasta. Food Chem 146:378–384. doi:10.1016/j.foodchem.2013.09.070
Qin HB, Zhu JM, Liang L et al (2013) The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environ Int 52:66–74. doi:10.1016/j.envint.2012.12.003
Qu JG, Xu BX, Gong SC (1997) Sequential extraction techniques for determination of selenium speciation in soils and sediments. Env Chem 16:277–283 (in Chinese)
Ramos SJ, Faquin V, Guilherme LRG et al (2010) Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ 56:584–588
Rios JJ, Blasco B, Cervilla LM et al (2009) Production and detoxification of H2O2 in lettuce plants exposed to selenium. Ann Appl Biol 154:107–116. doi:10.1111/j.1744-7348.2008.00276.x
Rouached H (2013) Recent developments in plant zinc homeostasis and the path toward improved biofortification and phytoremediation programs. Plant Signal Behav 8:e22681. doi:10.4161/psb.22681
Rovira M, Gim J, Mart X et al (2008) Sorption of selenium ( IV ) and selenium ( VI ) onto natural iron oxides. Goethite and hematite 150:279–284. doi:10.1016/j.jhazmat.2007.04.098
Sager M (2006) Selenium in agriculture, food, and nutrition. Pure Appl Chem 78:111–133. doi:10.1351/pac200678010111
Seppänen MM, Kontturi J, Heras IL et al (2010) Agronomic biofortification of brassica with selenium-enrichment of SeMet and its identification in brassica seeds and meal. Plant Soil 337:273–283. doi:10.1007/s11104-010-0523-y
Sharma S, Bansal A, Dhillon SK, Dhillon KS (2010) Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.). Plant Soil 329:339–348. doi:10.1007/s11104-009-0162-3
Su C, Suarez DL (2000) Selenate and selenite sorption on iron oxides. Soil Sci Soc Am J 64:101–111. doi:10.2136/sssaj2000.641101x
Tan J, Zhu W, Wang W et al (2002) Selenium in soil and endemic diseases in China. Sci Total Environ 284:227–235. doi:10.1016/S0048-9697(01)00889-0
Wang S, Wu X, Liang D et al (2010) Transformation and bioavailability for Pak choi (Brassica chinensis) of different forms of selenium added to calcareous. Acta Sci Circumst 30:2499–2505 (in Chinese)
Wang S, Liang D, Wang D et al (2012) Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China. Sci Total Environ 427–428:159–164. doi:10.1016/j.scitotenv.2012.03.091
Wang J, Wang Z, Mao H et al (2013) Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the loess plateau in China. F Crop Res 150:83–90. doi:10.1016/j.fcr.2013.06.010
WrObel K, Wrobel K, Kannamkumarath SS et al (2004) HPLC–ICP–MS speciation of selenium in enriched onion leaves—a potential dietary source of Se–methylselenocysteine. Food Chem 86:617–623. doi:10.1016/j.foodchem.2003.11.005
Wu Z, Bañuelos GS, Lin Z-Q et al (2015) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:136. doi:10.3389/fpls.2015.00136
Yu XZ, Gu JD (2008) Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow. Environ Sci Pollut Res 15:499–508. doi:10.1007/s11356-008-0036-x
Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292. doi:10.1007/s004250050402
Zhao C, Ren J, Xue C, Lin E (2005) Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 277:197–206. doi:10.1007/s11104-005-7011-9
Zheng S, Zhang M (2011) Effect of moisture regime on the redistribution of heavy metals in paddy soil. J Environ Sci 23:434–443. doi:10.1016/S1001-0742(10)60428-7
Zhu Y-G, Pilon-Smits EAH, Zhao F-J et al (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442. doi:10.1016/j.tplants.2009.06.006
Acknowledgements
The authors are thankful for the financial support provided by the National Natural Science Foundation of China (No. 41571454 and 41171379, to D. L. Liang). We also want to thank the two anonymous reviewers for their valuable comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Zhihong Xu
Electronic supplementary material
ESM 1
(XLSX 10 kb).
Rights and permissions
About this article
Cite this article
Ali, F., Peng, Q., Wang, D. et al. Effects of selenite and selenate application on distribution and transformation of selenium fractions in soil and its bioavailability for wheat (Triticum aestivum L.). Environ Sci Pollut Res 24, 8315–8325 (2017). https://doi.org/10.1007/s11356-017-8512-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-017-8512-9