Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10228–10242 | Cite as

Biophysical characterization of Acacia caesia-fabricated silver nanoparticles: effectiveness on mosquito vectors of public health relevance and impact on non-target aquatic biocontrol agents

  • Giovanni Benelli
  • Shine Kadaikunnan
  • Naiyf S. Alharbi
  • Marimuthu Govindarajan
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology


Mosquito-borne diseases lead to serious public health concerns in tropical and sub-tropical countries worldwide, due to development of mosquito resistance to synthetic pesticides, non-target effects of pesticides, and socioeconomic reasons. Currently, green nanotechnology is a promising research field, showing a wide range of potential applications in vector control programs. The employ of natural products as reducing agents to fabricate insecticidal nanocomposites is gaining research attention worldwide, due to low costs and high effectiveness. Interestingly, biophysical features of green-synthesized nanoparticles strongly differ when different botanicals are employed for nanosynthesis. In this study, a cheap Acacia caesia leaf extract was employed to fabricate silver nanoparticles (Ag NPs) with ovicidal, larvicidal, and adulticidal toxicity against three mosquito vectors, Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Ag NPs were analyzed by various biophysical methods, including spectroscopy (UV-visible spectrophotometry, XRD, FTIR, EDX) and microscopy (SEM, TEM, AFM) techniques. High acute larvicidal potential was observed against larvae of An. subpictus (LC50 = 10.33 μg/ml), Ae. albopictus (LC50 = 11.32 μg/ml), and Cx. tritaeniorhynchus (LC50 = 12.35 μg/ml). Ag NPs completely inhibited egg hatchability on three vectors at 60, 75, and 90 μg/ml, respectively. In adulticidal assays, LD50 values were 18.66, 20.94, and 22.63 μg/ml. If compared to mosquito larvae, Ag NPs were safer to three non-target aquatic biocontrol agents, with LC50 ranging from 684 to 2245 μg/ml. Overall, our study highlights the potential of A. caesia as an abundant and cheap bioresource to fabricate biogenic Ag NPs effective against mosquito young instars and adults, with moderate impact on non-target aquatic biocontrol agents.


Biological control Chikungunya Dengue Japanese encephalitis Mosquito control Non-target predators 



The authors extend their sincere appreciations to the Deanship of Scientific Research at King Saud University for funding this Prolific Research Group (PRG-1437-36).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81:81–86CrossRefGoogle Scholar
  2. Angajala G, Ramya R, Subashini R (2014) In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles phytofabricated from aqueous leaf extracts of Aegle marmelos Correa. Acta Trop 135:19–26CrossRefGoogle Scholar
  3. Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671CrossRefGoogle Scholar
  4. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 348:212–216CrossRefGoogle Scholar
  5. Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids Surf B Biointerfaces 71:113–118CrossRefGoogle Scholar
  6. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefGoogle Scholar
  7. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212CrossRefGoogle Scholar
  8. Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34CrossRefGoogle Scholar
  9. Benelli G (2016b) Plant-mediated synthesis of nanoparticles: a newer and safer tool against mosquito-borne diseases? Asian Pac J Trop Biomed 6:353–354CrossRefGoogle Scholar
  10. Benelli G (2016c) Spread of Zika virus: the key role of mosquito vector control. Asian Pac J Trop Biomed 6:468–471CrossRefGoogle Scholar
  11. Benelli G (2016d) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68CrossRefGoogle Scholar
  12. Benelli G (2017) Commentary: Data analysis in bionanoscience – issues to watch for. J Clust Sci. doi: 10.1007/s10876-016-1143-3
  13. Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754CrossRefGoogle Scholar
  14. Benelli B, Conti B, Garreffa R, Nicoletti M (2014) Shedding light on bioactivity of botanical by-products: neem cake compounds deter oviposition of the arbovirus vector Aedes albopictus (Diptera: Culicidae) in the field. Parasitol Res 113:933–940CrossRefGoogle Scholar
  15. Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114:227–236CrossRefGoogle Scholar
  16. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015b) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397CrossRefGoogle Scholar
  17. Benelli G, Pavela R, Canale A, Mehlhorn H (2016a) Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res. doi: 10.1007/s00436-016-5095-1 Google Scholar
  18. Benelli G, Lo Iacono A, Canale A, Mehlhorn H (2016b) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res 115:2131–2137CrossRefGoogle Scholar
  19. Chandramohan B, Murugan K, Panneerselvam C, Madhiyazhagan P, Chandirasekar R, Dinesh D, Mahesh Kumar P, Kovendan K, Suresh U, Subramaniam J, Rajaganesh R, Aziz AT, Syuhei B, Saleh Alsalhi M, Devanesan S, Nicoletti M, Wei H, Benelli G (2016) Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies. Parasitol Res 115:1015–1025CrossRefGoogle Scholar
  20. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583CrossRefGoogle Scholar
  21. Deo PG, Hasan SB, Majumdar SK (1988) Toxicity and suitability of some insecticides for household use. Int Pest Control 30:118–129Google Scholar
  22. Dinesh D, Murugan K, Madhiyazhagan P, PanneerselvamC NM, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:519–1529Google Scholar
  23. Elavazhagan T, Arunachalam KD (2011) Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomedicine 6:1265–1278CrossRefGoogle Scholar
  24. Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–72Google Scholar
  25. Gopinath V, Priyadarshini S, Priyadharshini NM, Pandian K, Velusamy P (2013) Biogenic synthesis of antibacterial silver chloride nanoparticles using leaf extracts of Cissus quadrangularis Linn. Mater Lett 91:224–227CrossRefGoogle Scholar
  26. Govindarajan M (2016) Green synthesized silver nanoparticles: a potential new insecticide for mosquito control. Springer International Publishing Switzerland, H. Mehlhorn (ed.), Nanoparticles in the fight against parasites—parasitology research monographs. P.99–153. doi:  10.1007/978-3-319-25292-6_7 (ISSN: 2192–3671)
  27. Govindarajan M, Sivakumar R (2011) Mosquito adulticidal and repellent activities of botanical extracts against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac J Trop Med 4:941–947CrossRefGoogle Scholar
  28. Govindarajan M, Benelli G (2016a) Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitol Res 115:925–935CrossRefGoogle Scholar
  29. Govindarajan M, Benelli G (2016b) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6:59021–59029CrossRefGoogle Scholar
  30. Govindarajan M, Benelli G (2016c) A facile one-pot synthesis of eco-friendly nanoparticles using Carissa carandas: ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. J Clust Sci. doi: 10.1007/s10876-016-1035-6 Google Scholar
  31. Govindarajan M, Hoti SL, Benelli G (2016a) Facile fabrication of eco-friendly nano-mosquitocides: biophysical characterization and effectiveness on neglected tropical mosquito vectors. Enzyme Microb Tech. doi: 10.1016/j.enzmictec.2016.05.005 Google Scholar
  32. Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Benelli G (2016b) Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors. Exp Parasitol 161:40–47CrossRefGoogle Scholar
  33. Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016d) One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101CrossRefGoogle Scholar
  34. Govindarajan M, Nicoletti M, Benelli G (2016e) Bio-physical characterization of poly-dispersed silver nanocrystals fabricated using Carissa spinarum: a potent tool against mosquito vectors. J Clust Sci 27:745–761CrossRefGoogle Scholar
  35. Govindarajan M, Rajeswary M, Veerakumar K, Hoti SL, Mehlhorn H, Barnard DR, Benelli G (2016f) Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res 115:723–733CrossRefGoogle Scholar
  36. Govindarajan M, Rajeswary M, Hoti SL, Murugan K, Kovendan K, Arivoli S, Benelli G (2016g) Clerodendrum chinense-mediated biofabrication of silver nanoparticles: mosquitocidal potential and acute toxicity against non-target aquatic organisms. J Asia Pac Entomol 19:51–58CrossRefGoogle Scholar
  37. Govindarajan M, Hoti SL, Rajeswary M, Benelli G (2016h) One-step synthesis of polydispersed silver nanocrystals using Malva sylvestris: an eco-friendly mosquito larvicide with negligible impact on non-target aquatic organisms. Parasitol Res 115:2685–2695CrossRefGoogle Scholar
  38. Govindarajan M, Rajeswary M, Hoti SL, Nicoletti M, Benelli G (2016i) Facile synthesis of mosquitocidal silver nanoparticles using Mussaenda glabra leaf extract: characterization and impact on non-target aquatic organisms. Nat Prod Res. doi: 10.1080/14786419.2016.1185721 Google Scholar
  39. Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Khater HF, Benelli G (2016c) Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: a potent eco-friendly tool against malaria and arbovirus vectors. J Photochem Photobiol B 161:482–489CrossRefGoogle Scholar
  40. Haldar KM, Halder B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva Drypetes roxburghii (wall). Parasitol Res 112:1451–1459CrossRefGoogle Scholar
  41. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104CrossRefGoogle Scholar
  42. Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194CrossRefGoogle Scholar
  43. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413CrossRefGoogle Scholar
  44. Kotakadi VS, Gaddam SA, Rao YS, Prasad TNVKV, Reddy AV, Gopal DVRS (2014) Biofabrication of silver nanoparticles using Andrographis paniculata. Eur J Med Chem 73:135–140CrossRefGoogle Scholar
  45. Kowshik M, Ashataputre S, Kharrazi S, Kulkarni SK, Paknikari KM, Vogel W (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. J Urban Nanotechnol 14:95–100CrossRefGoogle Scholar
  46. Krishnamurthy NB, Nagaraj B, Malaka BL, Liny L, Dinesh R (2012) Green synthesis of gold nanoparticles using Tagetes erecta L. (marigold) flower extract and evaluation of their antimicrobial activities. Int J Pharm Biosci 3:212–221Google Scholar
  47. Kumar KR, Nattuthurai N, Gopinath P, Mariappan T (2014) Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus. Parasitol Res 114:411–417CrossRefGoogle Scholar
  48. Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta A 90:173–176CrossRefGoogle Scholar
  49. Madhiyazhagan P, Murugan K, Naresh Kumar A, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Mahesh Kumar P, Suresh U, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Benelli G (2015) Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114:4305–4317CrossRefGoogle Scholar
  50. Magudapatty P, Gangopadhyayrans P, Panigrahi BK, Nair KGM, Dhara S (2001) Electrical transport studies of Ag nanoparticles embedded in glass matrix. Physica B 299:142–146CrossRefGoogle Scholar
  51. Maguranyi SK, Webb CE, Mansfield S, Russell RC (2009) Are commercially available essential oils from Australian native plants repellent to mosquitoes? J Am Mosq Control Assoc 25:292–300CrossRefGoogle Scholar
  52. Mahesh Kumar P, Murugan K, Madhiyazhagan P, Kovendan K, Amerasan D, Chandramohan B, Dinesh D, Suresh U, Nicoletti M, Saleh Alsalhi M, Devanesan S, Wei H, Kalimuthu K, Hwang JS, Lo Iacono A, Benelli G (2016) Biosynthesis, characterization and acute toxicity of Berberis tinctoria fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol Res 115:751–759CrossRefGoogle Scholar
  53. Marimuthu S, Rahuman AA, Govindasamy R, Thirunavukkarasu S, Arivarasan VK, Chidambaram J (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108:1541–1549CrossRefGoogle Scholar
  54. Mathew N, Anitha MG, Bala TSL, Sivakumar SM, Narmadha R, Kalyanasundaram M (2009) Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res 104:1017–1025CrossRefGoogle Scholar
  55. Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265CrossRefGoogle Scholar
  56. Murugan K, Benelli G, Suganya A, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–2253CrossRefGoogle Scholar
  57. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138CrossRefGoogle Scholar
  58. Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, Chandramohan B, Subramaniam J, Madhiyazhagan P, Dinesh D, Rajaganesh R, Alarfaj AA, Nicoletti M, Kumar S, Wei H, Canale A, Mehlhorn H, Benelli G (2015c) Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol Res 114:4087–4097CrossRefGoogle Scholar
  59. Murugan K, Panneerselvam C, Samidoss CM, Madhiyazhagan P, Roni M, Subramaniam J, Dinesh D, Rajaganesh R, Paulpandi M, Wei H, Aziz AT, Alsalhi MS, Devanesan S, Nicoletti M, Pavela R, Canale A, Benelli G (2016a) In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci 106:14–22CrossRefGoogle Scholar
  60. Murugan K, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Dinesh D, Suresh U, Roni M, Higuchi A, Nicoletti M, Benelli G (2016b) Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res. doi: 10.1007/s11356-016-6832-9 Google Scholar
  61. Muthukumaran U, Govindarajan M, Rajeswary M (2015) Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res 114:1817–1827CrossRefGoogle Scholar
  62. Naik BR, Gowreeswari GS, Singh Y, Satyavathi R, Daravath RR, Reddy PR (2014) Bio-synthesis of silver nanoparticles from leaf extract of Pongamia pinnata as an effective larvicide on dengue vector Aedes albopictus (Skuse) (Diptera: Culicidae). Adv Entomol 2:93–101CrossRefGoogle Scholar
  63. Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373CrossRefGoogle Scholar
  64. Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, Madhiyazhagan P, Subramaniam J, Dinesh D, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Desneux N, Benelli G (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res 115:997–1013CrossRefGoogle Scholar
  65. Parashar V, Parashar R, Sharma B, Pandey AC (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig J Nanomater Biostruct 4:45–50Google Scholar
  66. Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012a) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822CrossRefGoogle Scholar
  67. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012b) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non-target fish Poecillia reticulata. Parasitol Res 111:555–562CrossRefGoogle Scholar
  68. Paulsamy S, Senthilkumar P, Anandakumar AM, Sathishkumar P (2010) Utilization of forest flora as agricultural tools and other domestic goods by the villagers adjoining the foot hills of Anamalai, the western Ghats, Coimbatore district. J Non-Timb Forest Prod 17:339–334Google Scholar
  69. Pavela R, Benelli G (2016a) Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors—a review. Exp Parasitol 167:103–108CrossRefGoogle Scholar
  70. Pavela R, Benelli G (2016b) Essential oils as eco-friendly biopesticides? Challenges and constraints. Tr Plant Sci 21(12):1000–1007Google Scholar
  71. Pavela R, Govindarajan M (2016) The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J Pest Sci. doi: 10.1007/s10340-016-0763-6 Google Scholar
  72. Pullaiah T (2006) Encyclopaedia of world medicinal plants. Daya Books, New DelhiGoogle Scholar
  73. Rajakumar G, Abdul Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118:196–203CrossRefGoogle Scholar
  74. Raman N, Sudharsan S, Veerakumar V, Pravin N, Vithiya K (2012) Pithecellobium dulce mediated extra-cellular green synthesis of larvicidal silver nanoparticles. Spectrochim Acta A 96:1031–1037CrossRefGoogle Scholar
  75. Ramanibai R, Velayutham K (2015) Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci 98:82–88CrossRefGoogle Scholar
  76. Rashmi S, Preeti V (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504CrossRefGoogle Scholar
  77. Rastogi L, Arunachalam J (2011) Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater Chem Phy 129:558–563CrossRefGoogle Scholar
  78. Raut RW, Niranjan SK, Jaya RL, Vijay DM, Sahebrao BK (2010) Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L.) Pierre. Nano-Micro Lett 2:106–113CrossRefGoogle Scholar
  79. Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128:613–622CrossRefGoogle Scholar
  80. Reda M, Sheshtwy EI, Abdullah M, Nayera A (2011) In situ production of silver nanoparticles on cotton fabric and its antimicrobial evaluation. Cellulose 18:75–82CrossRefGoogle Scholar
  81. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38CrossRefGoogle Scholar
  82. Roopan SM, Rohit MG, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crop Prod 43:631–635CrossRefGoogle Scholar
  83. Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504CrossRefGoogle Scholar
  84. Sathishkumar M, Sneha K, Won SW, Cho CWS, Kim Yun YS (2009a) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloid Surface B 73:332–338CrossRefGoogle Scholar
  85. Sathishkumar P, Paulsamy S, Anandakumar AM, Senthilkumar P (2009b) Effect of habitat variation on the content of certain secondary metabolites of medicinal importance in the leaves of the plant: Acacia caesia Willd. Adv Plant Sci 22:451–453Google Scholar
  86. Semmler M, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn H (2009) Nature helps: from research to products against blood sucking arthropods. Parasitol Res 105:1483–1487CrossRefGoogle Scholar
  87. Shivshankar S, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631CrossRefGoogle Scholar
  88. Sivagnaname N, Kalyanasundaram M (2004) Laboratory evaluation of methanolic extract of Atlantia monophylla (family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem Inst Oswaldo Cruz 99:115–118CrossRefGoogle Scholar
  89. Soni N, Prakash S (2014) Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitol Res 113:4015–4022CrossRefGoogle Scholar
  90. Su T, Mulla MS (1998) Ovicidal activity of neem products (azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J Am Mosq Control Assoc 14:204–209Google Scholar
  91. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH, Benelli G (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res 22:20067–20083CrossRefGoogle Scholar
  92. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Mahesh Kumar P, Chandramohan B (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Poll Res. doi: 10.1007/s11356-015-6007-0 Google Scholar
  93. Suganya G, Karthi S, Shivakumar MS (2014) Larvicidal potential of silver nanoparticles synthesized from Lucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 113:1673–1679CrossRefGoogle Scholar
  94. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325CrossRefGoogle Scholar
  95. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562CrossRefGoogle Scholar
  96. Thambiraj J, Paulsamy S (2010) Antimicrobial activity of the folklore medicinal plant, Acacia caesia (L.) Wild. Plant Archives 10:675–678Google Scholar
  97. Thirunavokkarasu M, Balaji U, Behera S, Panda PK, Mishra BK (2013) Biosynthesis of silver nanoparticles from extract of Desmodium gangeticum (L.) DC. and its biomedical potential. Spectrochim Acta Part A 116:424–427CrossRefGoogle Scholar
  98. Thovhogi N, Diallo A, Gurib-Fakim A, Maaza M (2015) Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: main physical properties. J Alloys Compd 647:392–396CrossRefGoogle Scholar
  99. Tripathi A, Chandrasekaran N, Raichur AM, Mukherjee A (2009) Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J Biomed Nanotechnol 5(1):93–98CrossRefGoogle Scholar
  100. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014a) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785CrossRefGoogle Scholar
  101. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaram U (2014b) Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi and Culex quinquifasciatus (Diptera: Culicidae). Parasitol Res 113:2663–2673Google Scholar
  102. Veerekumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:4073–4085CrossRefGoogle Scholar
  103. Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6:95–101CrossRefGoogle Scholar
  104. Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240CrossRefGoogle Scholar
  105. Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S (2012) Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem 47:2405–2410CrossRefGoogle Scholar
  106. Vivekanandhan S, Misra M, Mohanty AK (2009) Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: an investigation on different soybean varieties. J Nanosci Nanotechnol 9(12):6828–6833CrossRefGoogle Scholar
  107. Ward M, Benelli G (2017) Avian and simian malaria: do they have a cancer connection? Parasitol Res. doi: 10.1007/s00436-016-5352-3
  108. World Health Organization (1981) Instruction for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides. WHO/VBC/81.806Google Scholar
  109. World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva 2005; WHO/CDS/WHOPES/GCDPP/1.3Google Scholar
  110. Yugandhar P, Savithramma N (2016) Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon. Appl Nanosci 6:223–233CrossRefGoogle Scholar
  111. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16:6667–6676CrossRefGoogle Scholar
  112. Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B 88:196–201CrossRefGoogle Scholar
  113. Zhu L, Tian Y (2011) Chemical composition and larvicidal activity of Blumea densiflora essential oils against Anopheles anthropophagus: a malarial vector mosquito. Parasitol Res 109:1417–1422CrossRefGoogle Scholar
  114. Zhu L, Tian Y (2013) Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol Res 112:1137–1142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  2. 2.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Unit of Vector Control, Phytochemistry and Nanotechnology, Department of ZoologyAnnamalai UniversityAnnamalai NagarIndia

Personalised recommendations