Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10894–10903 | Cite as

Alteration of adaptive behaviors of progeny after maternal mobile phone exposure

  • Nicolas Petitdant
  • Anthony Lecomte
  • Franck Robidel
  • Christelle Gamez
  • Kelly Blazy
  • Anne-Sophie VillégierEmail author
Research Article


Exposure of pregnant women to radiofrequency (RF) devices raises questions on their possible health consequences for their progeny. We examined the hazard threshold of gestational RF on the progeny’s glial homeostasis, sensory-motor gating, emotionality, and novelty seeking and tested whether maternal immune activation would increase RF toxicity. Pregnant dams were daily restrained with loop antennas adjoining the abdomen (fetus body specific absorption rates (SAR): 0, 0.7, or 2.6 W/kg) and received three lipopolysaccharide (LPS) intra-peritoneal injections (0 or 80 μg/kg). Scores in the prepulse startle inhibition, fear conditioning, open field, and elevated plus maze were assessed at adolescence and adulthood. Glial fibrillary acidic protein (GFAP) and interleukines-1β (ILs) were quantified. LPS induced a SAR-dependent reduction of the prepulse startle inhibition in adults. Activity in the open field was reduced at 2.6 W/kg at adolescence. GFAP and ILs, emotional memory, and anxiety-related behaviors were not modified. These data support the hypothesis that maternal immune activation increased the developmental RF exposure-induced long-term neurobiological impairments. These data support the fact that fetuses who receive combined environmental exposures with RF need special attention for protection.


Mobile phone Radiofrequency Neurodevelopment Behavior Sensori-motor processing Locomotor activity 



This work was funded by the Agency for Food, Environmental, and Occupational Health and Safety INFLAREF-N°EST-2012/2/021 and Sby the French Ministry of Ecology Program 190.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aït-Aïssa SBB, Poulletier De Gannes F, Hurtier A, Haro E, Taxile M et al (2010) In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a WiFi signal. C R Acad Sci 2010(11):592–601Google Scholar
  2. Akimoto S, Nagaoka T, Saito K, Watanabe S, Takahashi M, Ito K (2010) Comparison of SAR in realistic fetus models of two fetal positions exposed to electromagnetic wave from business portable radio close to maternal abdomen. Conf Proc IEEE Eng Med Biol Soc 2010:734–737. Google Scholar
  3. Aldad TS, Gan G, Gao XB, Taylor HS (2012) Fetal radiofrequency radiation exposure from 800–1900 mhz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep 2(1):312–324. CrossRefGoogle Scholar
  4. Altunkaynak BZ, Altun G, Yahyazadeh A, Kaplan AA, Deniz OG, Türkmen AP, Önger ME, Kaplan S (2016) Different methods for evaluating the effects of microwave radiation exposure on the nervous system. J Chem Neuroanat 75:62–69CrossRefGoogle Scholar
  5. Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN (2006) The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 11(1):47–55. CrossRefGoogle Scholar
  6. Bas O, Odaci E, Kaplan S, Acer N, Ucok K, Colakoglu S (2009a) 900 MHz electromagnetic field exposure affects qualitative and quantitative features of hippocampal pyramidal cells in the adult female rat. Brain Res 1265:178–185. CrossRefGoogle Scholar
  7. Bas O, Odaci E, Mollaoglu H, Ucok K, Kaplan S (2009b) Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol Ind Health 25(6):377–384. CrossRefGoogle Scholar
  8. Batinic B, Santrac A, Jancic I, Li G, Vidojevic A, Markovic B, Cook JM, Savic MM (2017) Positive modulation of alpha5 GABAA receptors in preadolescence prevents reduced locomotor response to amphetamine in adult female but not male rats prenatally exposed to lipopolysaccharide. Int J Dev Neurosci 61:31–39. CrossRefGoogle Scholar
  9. Bellieni CV, Pinto I, Bogi A, Zoppetti N, Andreuccetti D, Buonocore G (2012) Exposure to electromagnetic fields from laptop use of “laptop” computers. Arch Environ Occup Health 67(1):31–36. CrossRefGoogle Scholar
  10. Bilbo SD, Schwarz JM (2012) The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 33(3):267–286. CrossRefGoogle Scholar
  11. Bilbo SD, Levkoff LH, Mahoney JH, Watkins LR, Rudy JW, Maier SF (2005) Neonatal infection induces memory impairments following an immune challenge in adulthood. Behav Neurosci 119(1):293–301. CrossRefGoogle Scholar
  12. Bilbo SD, Smith SH, Schwarz JM (2012) A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. J NeuroImmune Pharmacol 7(1):24–41. CrossRefGoogle Scholar
  13. Blanchard RJ, Blanchard DC (1969) Passive and active reactions to fear-eliciting stimuli. J Comp Physiol Psychol 68(1, Pt.1):129–135. CrossRefGoogle Scholar
  14. Boksa P (2010) Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 24(6):881–897. CrossRefGoogle Scholar
  15. Bornhausen M, Scheingraber H (2000) Prenatal exposure to 900 MHz cell-phone electromagnetic fields had no effect on operant-behavior performances of adult rats. Bioelectromagnetics 21(8):566–574CrossRefGoogle Scholar
  16. Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C (2002) Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 26(2):204–215. CrossRefGoogle Scholar
  17. Bouji M, Lecomte A, Hode Y, de Seze R, Villegier AS (2012) Effects of 900 MHz radiofrequency on corticosterone, emotional memory and neuroinflammation in middle-aged rats. Exp Gerontol 47(6):444–451. CrossRefGoogle Scholar
  18. Budak GG, Muluk NB, Budak B, Ozturk GG, Apan A, Seyhan N (2009) Effects of intrauterine and extrauterine exposure to GSM-like radiofrequency on distortion product otoacoustic emissions in infant male rabbits. Int J Pediatr Otorhinolaryngol 73(3):391–399. CrossRefGoogle Scholar
  19. Calvente I, Fernandez MF, Perez-Lobato R, Davila-Arias C, Ocon O, Ramos R, Rios-Arrabal S, Villalba-Moreno J, Olea N, Nunez MI (2015) Outdoor characterization of radio frequency electromagnetic fields in a Spanish birth cohort. Environ Res 138:136–143. CrossRefGoogle Scholar
  20. Çelik Ö, Kahya MC, Nazıroğlu M (2016) Oxidative stress of brain and liver is increased by Wi-fi (2.45GHz) exposure of rats during pregnancy and the development of newborns. J Chem Neuroanat 75(Pt B):134–139. CrossRefGoogle Scholar
  21. Cervellati F, Franceschetti G, Lunghi L, Franzellitti S, Valbonesi P, Fabbri E, Biondi C, Vesce F (2009) Effect of high-frequency electromagnetic fields on trophoblastic connexins. Reprod Toxicol 28(1):59–65. CrossRefGoogle Scholar
  22. Cervellati F, Valacchi G, Lunghi L, Fabbri E, Valbonesi P, Marci R, Biondi C, Vesce F (2013) 17-beta-estradiol counteracts the effects of high frequency electromagnetic fields on trophoblastic connexins and integrins. Oxidative Med Cell Longev 2013:280–291CrossRefGoogle Scholar
  23. Cobb BL, Jauchem JR, Mason PA, Dooley MP, Miller SA, Ziriax JM, Murphy MR (2000) Neural and behavioral teratological evaluation of rats exposed to ultra-wideband electromagnetic fields. Bioelectromagnetics 21(7):524–537.;2-J CrossRefGoogle Scholar
  24. Dammann O, Leviton A (2000) Role of the fetus in perinatal infection and neonatal brain damage. Curr Opin Pediatr 12(2):99–104. CrossRefGoogle Scholar
  25. Dasdag S, Akdag MZ (2016) The link between radiofrequencies emitted from wireless technologies and oxidative stress. J Chem Neuroanat 75(Pt B):85–93. CrossRefGoogle Scholar
  26. Deniz OG, Kaplan S, Selçuk MB, Terzi M, Altun G, Yurt KK, Aslan K, Davis D (2017) Effects of short and long term electromagnetic fields exposure on the human hippocampus. J Microsc Ultrastruct 5(4):191–197. CrossRefGoogle Scholar
  27. van Deventer E, van Rongen E, Saunders R (2011) WHO research agenda for radiofrequency fields. Bioelectromagnetics 32(5):417–421. CrossRefGoogle Scholar
  28. Divan HA, Kheifets L, Obel C, Olsen J (2008) Prenatal and postnatal exposure to cell phone use and behavioral problems in children. Epidemiology 19(4):523–529. CrossRefGoogle Scholar
  29. Erdem Koc G, Kaplan S, Altun G, Gumus H, Gulsum Deniz O, Aydin I, Emin Onger M, Altunkaynak Z (2016) Neuroprotective effects of melatonin and omega-3 on hippocampal cells prenatally exposed to 900 MHz electromagnetic fields. Int J Radiat Biol 92(10):590–595. CrossRefGoogle Scholar
  30. Fiocchi S, Markakis IA, Ravazzani P, Samaras T (2013) SAR exposure from UHF RFID reader in adult, child, pregnant woman, and fetus anatomical models. Bioelectromagnetics 34(6):443–452. CrossRefGoogle Scholar
  31. Guxens M, Vermeulen R, van Eijsden M, Beekhuizen J, Vrijkotte TG, van Strien RT, Kromhout H, Huss A (2016) Outdoor and indoor sources of residential radiofrequency electromagnetic fields, personal cell phone and cordless phone use, and cognitive function in 5-6 year old children. Environ Res 150:364–374. CrossRefGoogle Scholar
  32. Hart FM, Faber JJ (1965) Fetal and maternal temperatures in rabbits. J Appl Physiol 20(4):737–741. CrossRefGoogle Scholar
  33. Hsieh MH, Swerdlow NR, Braff DL (2006) Effects of background and prepulse characteristics on prepulse inhibition and facilitation: implications for neuropsychiatric research. Biol Psychiatry 59(6):555–559. CrossRefGoogle Scholar
  34. Kaplan S, Deniz OG, Önger ME, Türkmen AP, Yurt KK, Aydın I, Altunkaynak BZ, Davis D (2016) Electromagnetic field and brain development. J Chem Neuroanat 75(Pt B):52–61. CrossRefGoogle Scholar
  35. Kentner AC, Khoury A, Lima Queiroz E, MacRae M (2016) Environmental enrichment rescues the effects of early life inflammation on markers of synaptic transmission and plasticity. Brain Behav Immun 57:151–160. CrossRefGoogle Scholar
  36. Kirsten TB, Bernardi MM (2017) Prenatal lipopolysaccharide induces hypothalamic dopaminergic hypoactivity and autistic-like behaviors: repetitive self-grooming and stereotypies. Behav Brain Res 331:25–29. CrossRefGoogle Scholar
  37. Klug S, Hetscher M, Giles S, Kohlsmann S, Kramer K (1997) The lack of effects of nonthermal RF electromagnetic fields on the development of rat embryos grown in culture. Life Sci 61(18):1789–1802. CrossRefGoogle Scholar
  38. Lameth J, Gervais A, Colin C, Leveque P, Jay TM, Edeline JM, Mallat M (2017) Acute neuroinflammation promotes cell responses to 1800 MHz GSM electromagnetic fields in the rat cerebral cortex. Neurotox Res 32(3):444–459. CrossRefGoogle Scholar
  39. Leveque P, Dale C, Veyret B, Wiart J (2004) Dosimetric analysis of a 900-MHz rat head exposure system. IEEE Trans Microw Theory Tech 52(8):2076–2083. CrossRefGoogle Scholar
  40. Li L, Du Y, Li N, Wu X, Wu Y (2009) Top-down modulation of prepulse inhibition of the startle reflex in humans and rats. Neurosci Biobehav Rev 33(8):1157–1167. CrossRefGoogle Scholar
  41. Mahmoudabadi FS, Ziaei S, Firoozabadi M, Kazemnejad A (2015) Use of mobile phone during pregnancy and the risk of spontaneous abortion. J Environ Health Sci Eng 21:13–34Google Scholar
  42. Marino C, Lagroye I, Scarfi MR, Sienkiewicz Z (2011) Are the young more sensitive than adults to the effects of radiofrequency fields? An examination of relevant data from cellular and animal studies. Prog Biophys Mol Biol 107(3):374–385. CrossRefGoogle Scholar
  43. Mausset AL, de Seze R, Montpeyroux F, Privat A (2001) Effects of radiofrequency exposure on the GABAergic system in the rat cerebellum: clues from semi-quantitative immunohistochemistry. Brain Res 912(1):33–46. CrossRefGoogle Scholar
  44. Mausset-Bonnefont AL, Hirbec H, Bonnefont X, Privat A, Vignon J, de Seze R (2004) Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiol Dis 17(3):445–454. CrossRefGoogle Scholar
  45. Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Abegaonkar MP (2012) Microwave radiation induced oxidative stress, cognitive impairment and inflammation in brain of Fischer rats. Indian J Exp Biol 50(12):889–896Google Scholar
  46. Meyer U, Feldon J (2009) Prenatal exposure to infection: a primary mechanism for abnormal dopaminergic development in schizophrenia. Psychopharmacology 206(4):587–602. CrossRefGoogle Scholar
  47. Mortazavi ST, Mortazavi SM, Zarei S, Haghani M, Habibzadeh P, Shojaei-fard MB (2016) The fundamental reasons why laptop computers should not be used on your lap. J Biomed Phys Eng 6:281–284Google Scholar
  48. Odaci E, Bas O, Kaplan S (2008) Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain Res 1238:224–229. CrossRefGoogle Scholar
  49. Ornitz EM (1969) Disorders of perception common to early infantile autism and schizophrenia. Compr Psychiatry 10(4):259–274. CrossRefGoogle Scholar
  50. Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M (2012) Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 26(4):623–634. CrossRefGoogle Scholar
  51. Paintlia MK, Paintlia AS, Contreras MA, Singh I, Singh AK (2008) Lipopolysaccharide-induced peroxisomal dysfunction exacerbates cerebral white matter injury: attenuation by N-acetyl cysteine. Exp Neurol 210(2):560–576. CrossRefGoogle Scholar
  52. Patterson PH (2009) Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res 204(2):313–321. CrossRefGoogle Scholar
  53. Petitdant N, Lecomte A, Robidel F, Gamez C, Blazy K, Villegier AS (2016) Cerebral radiofrequency exposures during adolescence: impact on astrocytes and brain functions in healthy and pathologic rat models. Bioelectromagnetics 37(5):338–350. CrossRefGoogle Scholar
  54. Poulletier de Gannes F, Haro E, Hurtier A, Taxile M, Athane A, Ait-Aissa S, Masuda H, Percherncier Y, Ruffie G, Billaudel B, Dufour P, Veyret B, Lagroye I (2012) Effect of in utero wi-fi exposure on the pre- and postnatal development of rats. Birth Defects Res B Dev Reprod Toxicol 95(2):130–136. CrossRefGoogle Scholar
  55. Romero E, Ali C, Molina-Holgado E, Castellano B, Guaza C, Borrell J (2007) Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence of antipsychotics. Neuropsychopharmacology 32(8):1791–1804. CrossRefGoogle Scholar
  56. Romero E, Guaza C, Castellano B, Borrell J (2010) Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia. Mol Psychiatry 15(4):372–383. CrossRefGoogle Scholar
  57. Rousset CI, Chalon S, Cantagrel S, Bodard S, Andres C, Gressens P, Saliba E (2006) Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats. Pediatr Res 59(3):428–433. CrossRefGoogle Scholar
  58. de Souza DF, Wartchow KM, Lunardi PS, Brolese G, Tortorelli LS, Batassini C, Biasibetti R, Goncalves CA (2015) Changes in astroglial markers in a maternal immune activation model of schizophrenia in Wistar rats are dependent on sex. Front Cell Neurosci 9:489–500CrossRefGoogle Scholar
  59. Varsier N, Dahdouh S, Serrurier A, De la Plata JP, Anquez J, Angelini ED, Bloch I, Wiart J (2014) Influence of pregnancy stage and fetus position on the whole-body and local exposure of the fetus to RF-EMF. Phys Med Biol 59(17):4913–4926. CrossRefGoogle Scholar
  60. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640. CrossRefGoogle Scholar
  61. Vrijheid M, Martinez D, Forns J, Guxens M, Julvez J, Ferrer M, Sunyer J (2010) Prenatal exposure to cell phone use and neurodevelopment at 14 months. Epidemiology 21(2):259–262. CrossRefGoogle Scholar
  62. Watilliaux A, Edeline JM, Leveque P, Jay TM, Mallat M (2011) Effect of exposure to 1,800 MHz electromagnetic fields on heat shock proteins and glial cells in the brain of developing rats. Neurotox Res 20(2):109–119. CrossRefGoogle Scholar
  63. Zhang Y, Li Z, Gao Y, Zhang C (2015) Effects of fetal microwave radiation exposure on offspring behavior in mice. J Radiat Res 56(2):261–268. CrossRefGoogle Scholar
  64. Zhao L, Peng RY, Wang SM, Wang LF, Gao YB, Dong J, Li X, ZT S (2012) Relationship between cognition function and hippocampus structure after long-term microwave exposure. Biomed Environ Sci 25(2):182–188. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Toxicology UnitNational Institute for Environmental Protection and Industrial Risks (INERIS)Verneuil-en-HalatteFrance
  2. 2.PériTox-INERIS LaboratoryUMR-I 01 Jules Verne University of PicardyAmiensFrance
  3. 3.Unité de Toxicologie Expérimentale, Parc Technologique ALATAInstitut National de l’Environnement Industriel et des RisquesVerneuil-en-HalatteFrance

Personalised recommendations