Skip to main content
Log in

Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L−1, respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Ghani NT, Hefny M, El-Chaghaby GAF (2007) Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int J Environ Sci Technol 4:67–73. https://doi.org/10.1007/BF03325963

    Article  CAS  Google Scholar 

  • ADB (1994) Asian Development Bank. Training manual for environmental monitoring. Engineering Science Inc., USA, pp 2–16

    Google Scholar 

  • Ahmad M, Usman ARA, Lee SS, Kim SC, Yang JH, Ok SY (2012) Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. J Ind Eng Chem 18(1):198–204

    Article  CAS  Google Scholar 

  • Ahrland S, Chatt J, Davies NR (1958) The relative affinities of ligand atoms for acceptor molecules and ions. Chem Soc London Q Rev 12(1958):265–276

    Article  CAS  Google Scholar 

  • Ajmal M, Rao RAK, Siddiqui BA (1996) Studies on removal and recovery of Cr (VI) from electroplating wastes. Water Res 30(6):1478–1482

    Article  CAS  Google Scholar 

  • Ajmal M, Khan AH, Ahmad S, Ahmad A (1998) Role of sawdust in the removal of copper (II) from industrial wastes. Water Res 32(10):3085–3091

    Article  CAS  Google Scholar 

  • Aksu Z, Gulen H (2002) Binary biosorption of iron(III) and iron(III)-cyanide complex ions on Rhizopus arrhizus: modelling of synergistic interaction. Process Biochem 38:161–173

    Article  CAS  Google Scholar 

  • Akter MS, Islam MN, Fardous Z, Khan MH, Rahman MA (2010) Assessment of heavy metals in handloom cottage, dyeing and printing industrial effluents in Belkuchi, Sirajganj. J Appl Sci Technol 7:85–90

    Google Scholar 

  • Ali N, Hameed A, Ahmed S (2009) Physicochemical characterization and Bioremediation perspective of textile effluent, dyes and metals by indigenous Bacteria. J Hazard Mater 164(1):322–328

    Article  CAS  Google Scholar 

  • Amin MN, Kaneco S, Kitagawa T, Begum AH, Katsumata, Suzuki T, Ohta K (2006) Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Ind Eng Chem Res 45:8105–8110

    Article  CAS  Google Scholar 

  • Anderson JM, Ingram JSI (1996) Tropical soil biology and fertility: a handbook of methods, 2nd edn. CAB International, Wallingford, pp 57–58

    Google Scholar 

  • Anirudhan TS, Sreedhar MK (1998) Adsorption thermodynamics of Co(II) on polysulphide treated sawdust. Indian J Chem Technol 5:41

    CAS  Google Scholar 

  • AOAC (1990) AOAC official methods of analysis, 15th edn. Association of Official Analytical Chemists, Arlington, pp 84–85

    Google Scholar 

  • Argun ME, Dursun S, Ozdemir C, Karatas M (2007) Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater 141:77–85

    Article  CAS  Google Scholar 

  • Ayers RS, Westcot DW (1985) FAO irrigation and drainage paper. Water Quality Agric 29:8–96

    Google Scholar 

  • Babich H, Stotzky G (1985) Heavy metal toxicity to microbe-mediated ecologic processes: a review and potential application to regulatory policies. Environ Res 36(1):111–137

    Article  CAS  Google Scholar 

  • Banat MI, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile dyecontaining effluents: a review. Bioresour Technol 58(3):217–277

    Article  CAS  Google Scholar 

  • Barakat S, Giusti L (2003) Chromium speciation in a river system in Veneto (ltaly) affected by tannery effluent. J Phys IV (Proc) 107(1):115–118

    CAS  Google Scholar 

  • Basso MC, Cerrella EG, Cukierman AL (2002) Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater. Ind Eng Chem Res 41:3580–3585

    Article  CAS  Google Scholar 

  • Batzias FA, Sidiras DK (2007) Simulation of dye adsorption by beech sawdust as affected by pH. J Hazard Mater 141(3):668–679

    Article  CAS  Google Scholar 

  • Behra BK, Mishra BN (1969) The effect of a sugar mill effluent on enzyme activities of rice seedlings. Ind Res 37:390–398

    Google Scholar 

  • Benaїssa H, Elouchdi MA (2007) Removal of copper ions from aqueous solutions by dried sunflower leaves. Chem Eng Process 46:614–622. https://doi.org/10.1016/j.cep.2006.08.006

    Article  CAS  Google Scholar 

  • Bhatnagar A, Minocha AK (2010) Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids Surf B Biointerfaces 76:544–548. https://doi.org/10.1016/j.colsurfb.2009.12.016

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-a review. Chem Eng J 157:277–296. https://doi.org/10.1016/j.cej.2010.01.007

    Article  CAS  Google Scholar 

  • Bian S, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir 27:6059–6068

    Article  CAS  Google Scholar 

  • Boota R, Bhatti HN, Hanif MA (2009) Removal of Cu (II) and Zn (II) using lignocellulosic fiber derived from Citrus reticulata (Kinnow) waste biomass. Sep Sci Technol 44(16):4000–4022

    Article  CAS  Google Scholar 

  • Brummer GW (1986) The Importance of Chemical Speciation in Environmental Processes. Springer-Verlag, Berlin, pp 169–192

    Book  Google Scholar 

  • Chada VGR, Hausner DB, Strongin DR, Rouff AA, Reeder RJ (2005) Divalent Cd and Pb uptake on calcite cleavage faces: an XPS and AFM study. J Colloid Interface Sci 288(2):350–360

    Article  CAS  Google Scholar 

  • Chen X, Lam KF, Mak SF, Yeung KL (2011) Precious metal recovery by selective adsorption using biosorbents. J Hazard Mater 186(1):902–910

    Article  CAS  Google Scholar 

  • Chojnacka K (2005) Biosorption of Cr(III) ions by eggshells. J Hazard Mater 121(1):167–173

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp: kinetics equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  CAS  Google Scholar 

  • Ciannamea EM, Stefani PM, Ruseckaite RA (2010) Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives. Bioresour Technol 101(2):818–825

    Article  CAS  Google Scholar 

  • Correia VM, Stephenson T, Judd SJ (1994) Characterisation of textile wastewaters—a review. Environ Technol 917–929

  • Daifullah AAM, Girgis BS, Gad HMH (2003) Utilization of agro-residues (rice husk) in small wastewater treatment plans. Mater Lett 57:1723–1731

    Article  CAS  Google Scholar 

  • Degen A, Kosec M (2000) The effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J Eur Ceram Soc 20(6):667–673

    Article  CAS  Google Scholar 

  • Doan HD, Lohi A, Dang VBH, Dang-Vu T (2008) Removal of Zn2+ and Ni2+ by adsorption in a fixed bed of wheat straw. Process Saf Environ Prot 86:259–267. https://doi.org/10.1016/j.psep.2008.04.004

    Article  CAS  Google Scholar 

  • DoE (2008) Guide for assessment of effluent treatment plants in EMP/EIA reports for textile industries. Department of Environment. Ministry of Environment and Forest, Bangladesh, p A-2

    Google Scholar 

  • Dönmez G, Aksu Z (2002) Removal of chromium(VI) from saline wastewaters by Dunaliella species. Process Biochem 38:751–762

    Article  Google Scholar 

  • ECR (1997) The Environment Conservation Rules. Department of Environment, Government of the People’s Republic of Bangladesh. Poribesh Bhaban E-16, Agargaon, Sher-e- Bangla Nagar, Dhaka 1207, Bangladesh, pp 179–226

  • Ekmekyapar F, Aslan A, Bayhan YK, Cakici A (2012) Biosorption of Pb(II) by nonliving lichen biomass of Cladonia rangiformis Hoffm. Int J Environ Res 6:417–424

    CAS  Google Scholar 

  • El Sayed GS, El Asmy AAH, El Nokrashy AM (2011) Batch removal of nickel by eggshell as a low cost sorbent. Int J Ind Chem 134:334–345

    Google Scholar 

  • Elzinga EJ, Reeder RJ (2002) X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: implications for site-specific metal incorporation preferences during calcite crystal growth. Geochim Cosmochim Acta 66(22):3943–3954

    Article  CAS  Google Scholar 

  • EPA (1974) Wastewater-treatment systems: upgrading textile operations to reduce pollution, United States Environmental Protection Agency, Washington DC, USA, In: EPA Technology Transfer, EPA-625/3–74-004, pp 1–12

  • Fatemeh A, Shariatmadari H, Mirghaffari N (2008) Modification of rice hull and sawdust sorptive characteristics for remove heavy metals from synthetic solutions and wastewater. J Hazard Mater 154:451–458

    Article  CAS  Google Scholar 

  • Gaballah I, Kilbertus G (1998) Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks. J Geochem Explor 62:241–286

    Article  CAS  Google Scholar 

  • Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2014) Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation. In: Heavy Metals in Water: Presence, Removal and Safety. Royal Society of Chemistry, London, pp 1–24. https://doi.org/10.1039/9781782620174-00001

    Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. Res Adv 2(16):6380–6388

    CAS  Google Scholar 

  • Habib A, Islam N, Islam A, Alam AMS (2007) Removal of copper from aqueous solution using orange peel, sawdust and bagasse. Pak J Anal Chem 8:21–25

    CAS  Google Scholar 

  • Han X, Wong YS, Wong MH, Tam NFY (2008) Effects of anion species and concentration on the removal of Cr(VI) by a microalgal isolate, Chlorella miniata. J Hazard Mater 158:615–620

    Article  CAS  Google Scholar 

  • He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry and modeling simulation tools. Bioresour Technol 160:67–78

    Article  CAS  Google Scholar 

  • Hughes MN, Poole RK (1991) Metal speciation and microbial growth-the hard (and soft) facts. J Gen Microbiol 137:725–734. https://doi.org/10.1099/00221287-137-4-725

    Article  CAS  Google Scholar 

  • Ileri O, Cay S, Uyanik A, Erduran N (2014) Removal of common heavy metals from aqueous solutions by waste Salvadora persica L. branches (Miswak). Int J Environ Res 8(4):987–996

    CAS  Google Scholar 

  • Ipeaiyeda R, Tesi GO (2014) Sorption and desorption studies on toxic metals from brewery effluent using eggshell as adsorbent. Adv Nat Sci 7(2):15–24

    Google Scholar 

  • Jackson ML (1973) Soil chemical analysis. Prentice Hall, Inc, Englewood Cliffs

    Google Scholar 

  • Javier B (2012) Kinetic studies for Cd(II) biosorption from treated urban effluents by native grape fruit biomass (Citrus paradise L.): the competitive effect of Pb(II), Cu(II) and Ni(II). Chem Eng J 191:278–287

    Article  CAS  Google Scholar 

  • Kadirvelu K, Namasivayam C (2003) Activated carbon from coconut coir pith as metal adsorbent: adsorption of Cd (II) from aqueous solution. Adv Environ Res 7(2):471–478

    Article  CAS  Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. J Hazard Mater 163(2):735–742

    Article  CAS  Google Scholar 

  • Karanth KR (1994) Groundwater assessment development and management. Tata McGraw-Hill Publishing Company Ltd., New Delhi, pp 248–250

    Google Scholar 

  • Kaur A, Vats S, Rekhi S, Bhardwaj A, Goel J, Tanwar RS, Gaur KK (2010) Physico-chemical analysis of the industrial effluents and their impact on the soil microflora. International Society for Environmental Information Scie nces 2010 Annual Conference (ISEIS). Procedia Environ Sci 2:595–599

    Article  Google Scholar 

  • Kelly-Vargas K, Cerro-Lopez M, Reyna-Tellez S, Bandala ER, Sanchez-Salas JL (2012) Biosorption of heavy metals in polluted water, using different waste fruit cortex. Phys Chem Earth 37–39:26–29

    Article  Google Scholar 

  • Khai WJ, Ling OM, Hua CK (2017) Removal of Zinc (II) from aqueous solution using mangosteen fruit shell. Adv Sci Lett 23(5):3980–3983(4)

    Article  Google Scholar 

  • Kobayashi H, Satoh K, Sawada K (2004) Adsorption of divalent heavy metal ions on calcium carbonate (calcite). Bunseki Kagaku 53(2):101–107

    Article  CAS  Google Scholar 

  • Kobya M (2004) Adsorption, kinetic and equilibrium studies of Cr (VI) by hazelnut shell activated carbon. Adsorpt Sci Technol 22:51–64

    Article  CAS  Google Scholar 

  • Krishnani KK, Meng X, Christodoulatos C, Boddu VM (2008) Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater 153:1222–1234

    Article  CAS  Google Scholar 

  • Kuh SE, Kim DS (2000) Removal characteristics of cadmium ion by waste egg shell. Environ Technol 21(8):883–890

    Article  CAS  Google Scholar 

  • Larous S, Meniai AH, Lehocine MB (2005) Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination 185:483–490

    Article  CAS  Google Scholar 

  • Laszlo JA, Dintzis FR (1994) Crop residues as ion-exchange materials. Treatment of soybean hull and sugar beet fiber (pulp) with epichlorohydrin to improve cation-exchange capacity and physical stability. J Appl Polym Sci 52:521–528

    Article  Google Scholar 

  • Li X, Liu S, Na Z, Lu D, Liu Z (2013) Adsorption, Concentration and Recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. Ecol Eng 60:160–166

    Article  CAS  Google Scholar 

  • Li WC, Law FY, Chan YHM (2017) Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk. Environ Sci Pollut Res 24:8903–8915. https://doi.org/10.1007/s11356-015-5081-7

    Article  CAS  Google Scholar 

  • Liang S, Guo X, Tian Q (2011) Adsorption of Pb2+ and Zn2+ from aqueous solutions by sulfured orange peel. Desalination 275:212–216. https://doi.org/10.1016/j.desal.2011.03.001

    Article  CAS  Google Scholar 

  • Liu R, Liu H, Qiang Z, Qu J, Li G, Wang DJ (2009) Effects of calcium ions on surface characteristics and adsorptive properties of hydrous manganese dioxide. Colloid Interface Sci 331(2):275

    Article  CAS  Google Scholar 

  • Marshall WE, Champangne ET (1995) Agricultural byproducts as adsorbents for metal ions in laboratory prepared solutions and manufacturing wastewater. J Environ Sci Health Part A Environ Sci Eng 30:241–261

    Google Scholar 

  • Mashangwa TD, Tekere M, Sibanda T (2017) Determination of the efficacy of eggshell as a low-cost adsorbent for the treatment of metal laden effluents. Int J Environ Res 11:175–188

    Article  Google Scholar 

  • Mountassir Y, Benayich A, Rezrazi M, Bercot P, Gebrati L (2013) Wastewater effluent characteristics from Moroccan textile industry. Water Sci Technol 67–12. https://doi.org/10.2166/wst.2013.205

  • Munaf E, Zein R (1997) The use of rice husk for removal of toxic metals from wastewater. Environ Technol 18(3):359–362

    Article  CAS  Google Scholar 

  • Munagapati VS, Yarramuthi V, Nadavala SK, Alla SR, Abburi K (2010) Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: kinetics, equilibrium and thermodynamics. Chem Eng J 157:357–365

    Article  CAS  Google Scholar 

  • Ngah WSW, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948. https://doi.org/10.1016/j.biortech.2007.06.011

    Article  CAS  Google Scholar 

  • Ning-chuan F, Xue-yi G (2012) Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Trans Nonferrous Metals Soc China 22(5):1224–1231

    Article  CAS  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  CAS  Google Scholar 

  • Oboh I, Aluyor E, Audu T (2009) Biosorption of heavy metal ions from aqueous solutions using a biomaterial. Leonardo J Sci 14:58–65

    Google Scholar 

  • Odozi O, Okeke S, Lartey RB (1985) Studies on binding metal ions with polymerized corncob and a composite resin with sawdust and onion skin. Agric Wastes 12:13–21

    Article  CAS  Google Scholar 

  • Ohioma AI, Luke NO, Amraibure O (2009) Studies on the pollution potential of wastewater from textile processing factories in Kaduna, Nigeria. J Toxicol Environ Health Sci 1:34–37

    CAS  Google Scholar 

  • Onundi YB, Mamun AA, Khatib MFA, Ahmed YM (2010) Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int J Environ Sci Technol 7:751

    Article  CAS  Google Scholar 

  • Osman HE, Badwy RK, Ahmad HF (2010) Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater. J Phytol 2:51–62

    Google Scholar 

  • Park HJ, Jeong SW, Yang JK, Kim BG, Lee SM (2007) Removal of heavy metals using waste eggshell. J Environ Sci 19(12):1436–1441

    Article  CAS  Google Scholar 

  • Pathak PD, Mandavgane SA, Kulkarni BD (2015) Fruit peel waste as a novel low-cost bio adsorbent. Rev Chem Eng 31:361–381

    Article  CAS  Google Scholar 

  • Paula H (2006) The use of hatchery residual biosorbent for removal of heavy metals from wastewater. Doctoral dissertation

  • Prasad AAS, Rao KVB (2010) Physicochemical characterization of textile effluent and screening for dye decolorizing bacteria. Global J Biotechnol Biochem 5(2):80–86

    Google Scholar 

  • Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization Studies. Biotechnol Prog 15(2):228–237

    Article  CAS  Google Scholar 

  • Putra WP, Kamari A, Yusoff SNM, Ishak CF, Mohamed A, Hashim N, Isa IM (2014) Biosorption of Cu (II), Pb(II) and Zn (II) ions from aqueous solutions using selected waste materials: adsorption and characterisation studies. J Encapsul Adsorption Sci 4(4):201–213

    Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1):70–80

    Article  CAS  Google Scholar 

  • Ranganathan K, Karunagaran K, Sharma DC (2007) Recycling of wastewaters of textile dyeing industries using advanced treatment technology and cost analysis—case studies. Resour Conserv Recyl 50(3):306–318

    Article  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Wiley, California

    Google Scholar 

  • Reddy KR, Cameselle C (2009) Overview of electrochemical remediation technologies. Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. Wiley, New Jersey

    Book  Google Scholar 

  • Reddy DHK, Seshaiah K, Reddy AVR, Rao MM, Wang MC (2010) Biosorption of Pb2+ from Aqueous Solutions by Moringa oleifera Bark: Equilibrium and Kinetic Studies. J Hazard Mater 174(1–3):831–838. https://doi.org/10.1016/j.jhazmat.2009.09.128

    Article  CAS  Google Scholar 

  • Rouff AA, Elzinga EJ, Reeder RJ, Fisher NS (2004) X-ray absorption spectroscopic evidence for the formation of Pb(II) inner-sphere adsorption complexes and precipitates at the calcite-water interface. Environ Sci Technol 38(6):1700–1707

    Article  CAS  Google Scholar 

  • Rouhollahi F, Zamani A, Karimi K, Etesami N (2014) Enhancement of nickel biosorption on fungal biomass by enzymatic and alkali pretreatments. Int J Environ Sci Technol 11:1911–1918

    Article  CAS  Google Scholar 

  • Roy RP, Prasad J, Joshi AP (2007) Effect of sugar factory effluent on some physic-chemical properties of soils – a case study. J Environ Sci 49(4):277–282

    CAS  Google Scholar 

  • Sabour AMF, Rabie FH, Mostafa T, Hassan SA (2001) Impact of industrial wastewater disposal on surface water bodies in Mostorod area, north greater Cairo. J Environ Sci 13:485–490

    Google Scholar 

  • Salam OEA, Reiad NA, El-Shafei MM (2011) A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. J Adv Res 2:297–303

    Article  Google Scholar 

  • Sarnaik S, Kanekar P (1995) Bioremediation of colour of methyl violet and phenol from dye industry waste effluent using Pseudomonas spp. isolated from factory soil. J Appl Bacteriol 79:459–469

    Article  CAS  Google Scholar 

  • Sawyer CC, McCarty P (1978) Chemistry for environmental engineers. McGraw Hill, New York, pp 331–514

    Google Scholar 

  • Schiewer S, Patil SB (2008) Modeling the effect of pH on biosorption of heavy metals by citrus peels. J Hazard Mater 157:8–17

    Article  CAS  Google Scholar 

  • Sedlak DL, Phinney JT, Bedsworth WW (1997) Strongly complexed Cu and Ni in wastewater effluents and surface runoff. Environ Sci Technol 31(10):3010–3016

    Article  CAS  Google Scholar 

  • Selvi K, Pattabhi S, Kadirvelu K (2001) Removal of Cr (VI) from aqueous solution by adsorption onto activated carbon. Bioresour Technol 80:87–89

    Article  CAS  Google Scholar 

  • Serrano-Gómez J, Olguín MT (2015) Separation of Cr (VI) from aqueous solutions by adsorption on the micro fungus Ustilago maydis. Int J Environ Sci Technol 12:2559

    Article  CAS  Google Scholar 

  • Shahwan T, Zünbül B, Tunusoğlu Ö, Eroğlu AE (2005) AAS, XRPD, SEM/EDS, and FTIR characterization of Zn2+ retention by calcite, calcite–kaolinite, and calcite–clinoptilolite minerals. J Colloid Interface Sci 286(2):471–478

    Article  CAS  Google Scholar 

  • Sharifuzzaman SM, Rahman H, Ashekuzzaman SM, Islam MM, Chowdhury SR, Hossain MS (2016) Heavy metals accumulation in coastal sediments. In: environmental remediation technologies for metal-contaminated soils. Springer, Japan, pp 21–42

    Book  Google Scholar 

  • Sharma RK, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66(2):258–266

    Article  CAS  Google Scholar 

  • Shukla SR, Pai RS (2005) Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust. Sep Purif Technol 43:1–8

    Article  CAS  Google Scholar 

  • Shukla SR, Roshan PS (2005) Removal of Pb(II) from solution using cellulose-containing materials. J Chem Technol Biotechnol 80:176–183

    Article  CAS  Google Scholar 

  • Shukla A, Zang YH, Dubey P, Margrave JL, Shukla SS (2002) The role of sawdust in the removal of unwanted materials from water. J Hazard Mater B95:137–152

    Article  Google Scholar 

  • Shukla SR, Pai RS, Shendarkar AD (2006) Adsorption of Ni(II), Zn(II) and Fe(II) on modified coir fibres. Sep Purif Technol 47(3):141–147

    Article  CAS  Google Scholar 

  • Sirajudeen J, Naveen J, Manikandan SA, Mubashir MMM (2013) Removal of chromium (VI) from aqueous solution by using Citrus limetta Peel as an adsorbent. Der Chemica Sinica 4(2):133–143

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley – Interscience, New York

    Google Scholar 

  • Sẃietlik R (1998) Speciation analysis of chromium in waters. Pol J Environ Stud 7(5):257–266

    Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2013) Wastewater engineering: treatment and reuse, 4th edn. McGraw Hill, New York

  • Tsai WT, Yang JM, Lai CW, Cheng YH, Lin CC, Yeh CW (2006) Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour Technol 97(3):488–493

    Article  CAS  Google Scholar 

  • Twiss MR, Errecalde O, Fortin C, Campbell PGC, Jumarie C, Denizeau F, Berkelaar E, Hale B, Van Rees K (2001) Coupling the use of computer chemical speciation models and culture techniques in laboratory investigations of trace metal toxicity. Chem Speciat Bioavailab 13:9–24

    Article  CAS  Google Scholar 

  • Üçer A, Uyanik A, Aygün ŞF (2006) Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Sep Purif Technol 47:113–118

    Article  CAS  Google Scholar 

  • USEPA (1999) US Environmental Protection Agency, Screening Level Ecological Risk Assessment Protocol. Appendix E: Toxicity Reference values U.S. EPA Region 6. Office of Solid waste

  • Vadivelan V, Kumar KV (2005) Equilibrium, kinetics, mechanism and processs design from the sorption of methylene blue onto rice Husk. J Colloid Interface Sci 286:90–100

    Article  CAS  Google Scholar 

  • Vaghetti JCP, Lima EC, Royer B, Cunha BM, Cardoso NF, Brasil JL, Dias SLP (2009) Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions. J Hazard Mater 162:270–280

    Article  CAS  Google Scholar 

  • Verma SR, Shukla GR (1969) Pollution in a perennial stream, ‘Khala’ the sugar factory effluent near lakes. Environ Health 11:145–162

    Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2007) Modeling equilibrium and kinetics of metal uptake by algal biomass in continuous stirred and packed bed adsorbers. Adsorption 13(5–6):587–601

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC Press, Florida

    Google Scholar 

  • Volesky B, Naja G (2007) Biosorption technology: starting up an enterprise. Int J Technol Transf Commer 6(2–4):196–211

    Google Scholar 

  • Wang XS, Huang J, Hu HQ, Wang J, Qin Y (2007) Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite. J Hazard Mater 142:468–476

    Article  CAS  Google Scholar 

  • Wang XS, Li ZZ, Tao SR (2009) Removal of chromium (VI) from aqueous solution using walnut hull. J Environ Manag 90(2):721–729. https://doi.org/10.1016/j.jenvman.2008.01.011

    Article  CAS  Google Scholar 

  • Witek-Krowiak A (2013) Application of beech sawdust for removal of heavy metals from water: biosorption and desorption studies. Eur J Wood Wood Prod 71:227–236. https://doi.org/10.1007/s00107-013-0673-8

    Article  CAS  Google Scholar 

  • Wood WA, Kellogg ST (1988) Biomass, cellulose and hemicellulose. Methods Enzymol 160:632–634

    Article  Google Scholar 

  • Yamabi S, Imai H (2002) Growth conditions for wurtzite zinc oxide films in aqueous solutions. J Mater Chem 12(12):3773

    Article  CAS  Google Scholar 

  • Yang K, Lin D, Xing B (2009) Interactions of humic acid with nanosized inorganic oxides. Langmuir 25(6):3571

    Article  CAS  Google Scholar 

  • Yu B, Zhang Y, Shukla SS, Dorris KL (2000) The removal of heavy metal from aqueous solutions by sawdust adsorption-removal of copper. J Hazard Mater B80:33–42

    Article  Google Scholar 

  • Yusoff SNM, Kamari A, Putra WP, Ishak CF, Mohamed A, Hashim N, Isa IM (2014) Removal of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected agricultural wastes: adsorption and characterisation studies. J Environ Prot 5:289–300. https://doi.org/10.4236/jep.2014.54032

    Article  CAS  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43(17):4249

    Article  CAS  Google Scholar 

  • Zhang Y, Zheng R, Zhao JY, Jiang Z, Shan DX, Lu Y (2014) Biosorption of Fe (II) and Mn(II) ions from aqueous solution by rice husk ash. Biomed Res Int 2014:1–10

    Google Scholar 

  • Zouboulis AI, Matis KA, Hancock IC (1998) Biosorption of metals from dilute aqueous solutions. Sep Purif Methods 26:255–295

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial supports as Special allocation for the fiscal year 2015-16 from Ministry of Science and Technology, Government of the People’s Republic of Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Mohiuddin.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahar, K., Chowdhury, M.A.K., Chowdhury, M.A.H. et al. Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts. Environ Sci Pollut Res 25, 7954–7967 (2018). https://doi.org/10.1007/s11356-017-1166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1166-9

Keywords

Navigation