Skip to main content

Contribution of ammonia-oxidizing archaea and ammonia-oxidizing bacteria to ammonia oxidation in two nitrifying reactors

Abstract

In this study, two laboratory nitrifying reactors (NRI and NRII), which were seeded by sludge from different sources and operated under different operating conditions, were found to possess distinct dominant ammonia-oxidizing microorganisms. Ammonia-oxidizing archaeal (AOA) amoA genes outnumbered ammonia-oxidizing bacterial (AOB) amoA genes in reactor NRI, while only AOB amoA genes were detectable in reactor NRII. The AOA amoA gene sequences retrieved from NRI were characterized within the Nitrososphaera sister cluster of the group 1.1b Thaumarchaeota. Two inhibitors for ammonia oxidation, allylthiourea (ATU) and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), were applied individually and as a mixture to observe the ammonia-oxidizing activity of both microorganisms in the reactors’ sludge. The results indicated that AOA and AOB jointly oxidized ammonia in NRI, while AOB played the main role in ammonia oxidation in NRII. DNA-stable isotope probing with labeled 13C–HCO3 was performed on NRI sludge. Incorporation of 13C into AOA and AOB implied that both microorganisms may perform autotrophy during ammonia oxidation. Taken together, the results from this study provide direct evidence demonstrating the contribution of AOA and AOB to ammonia oxidation in the nitrifying reactors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6(3):245–252. https://doi.org/10.1038/nrmicro1852

    CAS  Article  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102(41):14683–14688. https://doi.org/10.1073/pnas.0506625102

    CAS  Article  Google Scholar 

  • Gao J-F, Luo X, Wu G-X, Li T, Yong-Zhen P (2013) Quantitative analyses of the composition and abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in eight full-scale biological wastewater treatment plants. Bioresour Technol 138:285–296. https://doi.org/10.1016/j.biortech.2013.03.176

    CAS  Article  Google Scholar 

  • Gao J-F, Luo X, Wu G-X, Li T, Yong-Zhen P (2014) Abundance and diversity based on amoA gene of ammonia-oxidizing archaea and bacteria in ten wastewater treatment systems. Appl Microbiol Biotechnol 98(7):3339–3354. https://doi.org/10.1007/s00253-013-5428-2

    CAS  Article  Google Scholar 

  • Huang Y, Niu BF, Gao Y, LM F, Li WZ (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26(5):680–682. https://doi.org/10.1093/bioinformatics/btq003

    CAS  Article  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437(7058):543–546. https://doi.org/10.1038/nature03911

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    CAS  Article  Google Scholar 

  • Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci 108(38):15892–15897

  • Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, Prosser JI, Nicol GW (2016) Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 92(5):fiw057. https://doi.org/10.1093/femsec/fiw057

    Article  Google Scholar 

  • Li YY, Ding K, Wen XH, Zhang B, Shen B, Yang YF (2016) A novel ammonia-oxidizing archaeon from wastewater treatment plant: its enrichment, physiological and genomic characteristics. Sci Rep 6:23747. https://doi.org/10.1038/srep23747

  • Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C (2011) Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour Technol 102(4):3694–3701. https://doi.org/10.1016/j.biortech.2010.11.085

    CAS  Article  Google Scholar 

  • Martens-Habbena W, Qin W, Horak REA, Urakawa H, Schauer AJ, Moffett JW, Armbrust EV, Ingalls AE, Devol AH, Stahl DA (2015) The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ Microbiol 17(7):2261–2274. https://doi.org/10.1111/1462-2920.12677

    CAS  Article  Google Scholar 

  • Mußmann M et al (2011) Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci 108(40):16771–16776. https://doi.org/10.1073/pnas.1106427108

    Article  Google Scholar 

  • Niu J, Kasuga I, Kurisu F, Furumai H, Shigeeda T (2013) Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing. Water Res 47(19):7053–7065. https://doi.org/10.1016/j.watres.2013.07.056

    CAS  Article  Google Scholar 

  • Park HD, Wells GF, Bae H, Griddle CS, Francis CA (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72(8):5643–5647. https://doi.org/10.1128/AEM.00402-06

    CAS  Article  Google Scholar 

  • Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14(2):525–539. https://doi.org/10.1111/j.1462-2920.2011.02666.x

    CAS  Article  Google Scholar 

  • Rongsayamanont C, Limpiyakorn T, Law B, Khan E (2010) Relationship between respirometric activity and community of entrapped nitrifying bacteria: implications for partial nitrification. Enzym Microb Technol 46(3-4):229–236. https://doi.org/10.1016/j.enzmictec.2009.10.014

    CAS  Article  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizingpopulations. Appl Environ Microbiol 63(12):4704–4712

    CAS  Google Scholar 

  • Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, Neufeld JD (2017) Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J 11(5):1142–1157. https://doi.org/10.1038/ismej.2016.192

    CAS  Article  Google Scholar 

  • Shen TL, Stieglmeier M, Dai JL, Urich T, Schleper C (2013) Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett 344(2):121–129. https://doi.org/10.1111/1574-6968.12164

    CAS  Article  Google Scholar 

  • Sinthusith N, Terada A, Hahn M, Noophan PL, Munakata-Marr J, Figueroa LA (2015) Identification and quantification of bacteria and archaea responsible for ammonia oxidation in different activated sludge of full-scale wastewater treatment plants. J Environ Sci Health A Tox Hazard Subst Environ Eng 50(2):169–175. https://doi.org/10.1080/10934529.2014.975535

    CAS  Article  Google Scholar 

  • Sonthiphand P, Limpiyakorn T (2011) Change in ammonia-oxidizing microorganisms in enriched nitrifying activated sludge. Appl Microbiol Biotechnol 89(3):843–853. https://doi.org/10.1007/s00253-010-2902-y

    CAS  Article  Google Scholar 

  • Tourna M et al (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 108(20):8420–8425. https://doi.org/10.1073/pnas.1013488108

  • Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSG, Chan PP, Gollabgir A, Hemp J, Hugler M, Karr EA, Konneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci 107(19):8818–8823. https://doi.org/10.1073/pnas.0913533107

    CAS  Article  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate reducingbacteria. In: Balows A, Trüper HG (eds) The prokaryotes, vol. IV, 2nd edn. Springer, New York, pp 352–3378. https://doi.org/10.1007/978-1-4757-2191-1_21

    Google Scholar 

  • Zhang LM, HW H, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6(5):1032–1045. https://doi.org/10.1038/ismej.2011.168

    CAS  Article  Google Scholar 

  • Zhang Y, Tian Z, Liu M, Shi ZJ, Hale L, Zhou J, Yang M (2015). High concentrations of the antibiotic spiramycin in wastewater lead to high abundance of ammonia-oxidizing archaea in nitrifying populations. Environ Sci Technol 49(15):9124–9132. https://doi.org/10.1021/acs.est.5b01293

Download references

Funding

The authors are deeply grateful of the Thailand Research Fund (grant no. RSA5780036) and the 90th Anniversary of the Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) for their financial support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawan Limpiyakorn.

Additional information

Responsible editor: Gerald Thouand

Electronic supplementary material

ESM 1

(DOCX 3.23 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srithep, P., Pornkulwat, P. & Limpiyakorn, T. Contribution of ammonia-oxidizing archaea and ammonia-oxidizing bacteria to ammonia oxidation in two nitrifying reactors. Environ Sci Pollut Res 25, 8676–8687 (2018). https://doi.org/10.1007/s11356-017-1155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1155-z

Keywords

  • Ammonia-oxidizing archaea
  • Ammonia-oxidizing bacteria
  • DNA-stable isotope probing
  • Nitrifying reactor
  • Wastewater treatment
  • Selective inhibitors for ammonia oxidation