Skip to main content

Advertisement

Log in

Decision support system for management of reactive nitrogen flows in wastewater system

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The change in nitrogen balance causes many environmental and socioeconomic impacts. In relation to food production and nitrogen release in wastewater systems, wastewater and sludge discharge and mineral fertilizer use intensify nitrogen imbalance of a region. The replacement of mineral fertilizer by nitrogen from treated wastewater, biosolids, and treated urine is a promising alternative. This work presents a model to support decision taking for the management of reactive nitrogen flows in wastewater systems based on system dynamics. Six scenarios were simulated for nitrogen flows in wastewater systems and related components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Billen G, Garnier J, Lassaletta L (2013) The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales. Phil Trans R Soc B 368(1621):20130123. https://doi.org/10.1098/rstb.2013.0123

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob Biogeochem Cycles 16:8–11

    Google Scholar 

  • Cordell D, Drangert J, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  • De Klein C, Novoa RSA, Ogle S, Smith KA, Rochette P, Wirth, TC, McConkey BG, Mosier A, Rypdal K, (2006) N2O emissions from managed soils, and CO2 emissions from lime and urea application. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (Eds). IPCC Guidelines for National Greenhouse Gas Inventories 4, 11.1–11.54

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1(10):636–639. https://doi.org/10.1038/ngeo325

    Article  CAS  Google Scholar 

  • Erisman JW, Galloway JN, Dice NB, Sutton MA, Bleeker A, Grizzetti B, Leach AM, de Vries W (2015) Nitrogen: too much of a vital resource. Science brief. WWF Netherlands, Zeist

    Google Scholar 

  • FAO (2009) The State of Food and Agriculture (SOFA). Livestock in the balance. Food and Agriculture Organization of the United Nations, Rome

  • FAO (2016) FAOSTAT: Food balance. Available in: <http://faostat3.fao.org/browse/FB/*/E>. Accessed 12 July 2016

  • Gronman K, Ypya J, Virtanen Y, Kurppa S, Soukka R, Seuri P, Finer A, Linnanen L (2016) Nutrient footprint as a tool to evaluate the nutrient balance of a food chain. J Clean Prod 112:2429–2440. https://doi.org/10.1016/j.jclepro.2015.09.129

    Article  CAS  Google Scholar 

  • Gu B, Ju X, Chang J, Ge Y, Vitousek PM (2015) Integrated reactive nitrogen budgets and future trends in China. Proc Natl Acad Sci U S A 112(28):8792–8797. https://doi.org/10.1073/pnas.1510211112

    Article  CAS  Google Scholar 

  • Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U (2005) Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 168:439–446

    Article  CAS  Google Scholar 

  • IFA (2009) Fertilizers, climate change and enhancing agricultural productivity sustainably, 1st edn. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Jönsson H, Vinnerås B, Höglund C, Stenström TA, Dalhammar G, Krichmann H (2000) Källsorterad humanurin i kretslopp. VA-forsk Rapport 2000:1

    Google Scholar 

  • Karlsson S, Rodhe L, 2002. Översyn av Statistiska Centralbyråns beräkning av ammoniakavgången i jordbruket – emissionsfaktorer för ammoniak vid lagring och spridning av stallgödsel. JTI Uppdragsrapport

  • Larsen TA, Alder AC, Eggen RIL, Maurer M, Lienert J (2009) Source separation: will we see a paradigm shift in wastewater handling? Environ Sci Technol 43(16):6121–6125. https://doi.org/10.1021/es803001r

    Article  CAS  Google Scholar 

  • Magid J, Eilersen AM, Wrisberg S, Henze M (2006) Possibilities and barriers for recirculation of nutrients and organic matter from urban to rural areas: a technical theoretical framework applied to the medium-sized town Hillerød, Denmark. Ecol Eng 28(1):44–54. https://doi.org/10.1016/j.ecoleng.2006.03.009

    Article  Google Scholar 

  • Martín, J., 2006. Theory and practical exercises of system dynamics, second ed. Barcelona, Spain

  • Mihelcic JR, Fry LM, Shaw R (2011) Global potential of phosphorus recovery from human urine and feces. Chemosphere 84(6):832–839. https://doi.org/10.1016/j.chemosphere.2011.02.046

    Article  CAS  Google Scholar 

  • Munch EV, Winker M, 2011. Technology review – urine diversion components. Overview of urine diversion components such as waterless urinals, urine diversion toilets, urine storage and reuse systems. Sustainable sanitation – ecosan program. Deutsche Gesellschaft Fur Internationale Zusammenarbeit (GIZ) GmbH

  • Richert A, Gensch R, Jönsson H, Stenström TA, Dagerskog L (2010) Practical guidance on the use of urine in crop production. Stockholm Environment Institute, Stockholm

    Google Scholar 

  • Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009) A safe operating space for humanity. Nat 461(7263):472–475. https://doi.org/10.1038/461472a

    Article  Google Scholar 

  • Santos OSN, Texeira MB, Gheyi HR, Queiroz LM, Paz VPS, Linge CS, Kiperstok A (2015) Bermudagrass fertilization with human urine as a tool to close nutrient cycles: the use of micronutrients. Afr J Agric Res 10:3189–3199

    Article  Google Scholar 

  • Schroder JJ (2014) The position of mineral nitrogen fertilizer in efficient use of nitrogen and land: a review. Nat Resour 5:936–948

    Google Scholar 

  • Smil V (2011) Nitrogen cycle and world food production. World Agric 2:9–13

    Google Scholar 

  • Spangberg J, Tidaker P, Jonsson H (2014) Environmental impact of recycling nutrients in human excreta agriculture compared with enhanced wastewater treatment. Sci Total Environ 493:209–219. https://doi.org/10.1016/j.scitotenv.2014.05.123

    Article  CAS  Google Scholar 

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855

    Article  Google Scholar 

  • Sterman JD (2000) Business dynamics: systems thinking and modeling for a complex world. Irwin/McGraw-Hill, Boston

    Google Scholar 

  • Westhoek H, Lesschen JP, Rood T, Wagner S, de Marco A, Murphy-Bokern D, Leip A, vans Grinsven H, Sutton MA, Oenema O (2014) Food choices, health and environment: effects of cutting Europe’s meat and dairy intake. Glob Environ Chang 26:196–205. https://doi.org/10.1016/j.gloenvcha.2014.02.004

    Article  Google Scholar 

  • WHO (2007) Protein and amino acid requeriments in human nutrition. Report of a joint WHO/FAO/UNU Expert Consultation. World Health Organization, WHO Technical Report Series 935, United Nations University, Geneva

  • Zhang W-F, Dou Z-X, He P, Ju X-T, Powlson D, Chadwick D, Norse D, Lu Y-L, Zhang Y, Wu L, Chen X-P, Cassman KG, Zhang F-S (2013) New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc Natl Acad Sci U S A 110(21):8375–8380. https://doi.org/10.1073/pnas.1210447110

    Article  CAS  Google Scholar 

  • Zhou C, Liu J, Wang R, Yang W, Jin J (2010) Ecological-economic assessment of ecological sanitation development in the cities of Chinese Loess Plateau. Ecol Complex 7(2):162–169. https://doi.org/10.1016/j.ecocom.2009.10.001

    Article  Google Scholar 

Download references

Funding

This research study was supported by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) and Science without Borders (CsF/CAPES), Brazilian Scholarship Program (grant 18781/12-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco R. A. Nascimento.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, F.R.A., Kiperstok, A., Martín, J. et al. Decision support system for management of reactive nitrogen flows in wastewater system. Environ Sci Pollut Res 25, 8644–8653 (2018). https://doi.org/10.1007/s11356-017-1128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1128-2

Keywords

Navigation