Environmental Science and Pollution Research

, Volume 25, Issue 9, pp 8550–8562 | Cite as

Use of non-living lyophilized Phanerochaete chrysosporium cultivated in various media for phenol removal

  • Tímea Pernyeszi
  • Viktor Farkas
  • Attila Felinger
  • Borbála Boros
  • Imre Dékány
Research Article


The biosorption of phenol on non-living lyophilized mycelial pellets of Phanerochaete chrysosporium cultivated in liquid medium of various compositions was studied in batch biosorption system. The fungal cell surfaces were characterized by FTIR spectroscopy and specific surface charge determination. The sorption kinetics and equilibrium were evaluated using linear and non-linear regression. For adsorption equilibrium, a comparative evaluation is also presented using non-linear least-square estimation and linearization of the Langmuir and anti-Langmuir equations. The presence of mineral and vitamin materials in the liquid medium enhanced the adsorption capacity of fungal biomass for phenol. At optimum pH 5–6, the values of specific surface charge were 0.023 and 0.069 meq g−1 for various cultivations, and the maximum amounts of phenol can be adsorbed at these pH values. The maximum adsorbed phenol amounts by cells cultivated in simple and complex media were 4.53 and 13.48 mg g−1, respectively, at an initial phenol concentration of 100 mg l−1.

Graphical abstract


Phenol Phanerochaete chrysosporium Cultivation Heat and pressure treatment Lyophilization Biosorption 



The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary. Tímea Pernyeszi, Attila Felinger and Viktor Farkas gratefully acknowledge support for this research from TAMOP-4.2.2.D-15/1/KONV-2015-0013 and the project of “Intézményi Kiválósági Támogatás 2017” hungarian research grants.


  1. Aksu Z (2001) Equilibrium and kinetic modelling of cadmium(II) biosorption by C-vulgaris in a batch system: effect of temperature. Sep Purif Technol 21(3):285–294. CrossRefGoogle Scholar
  2. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3-4):997–1026. CrossRefGoogle Scholar
  3. Aksu Z, Tezer S (2000) Equilibrium and kinetic modelling of biosorption of Remazol black B by Rhizopus arrhizus in a batch system: effect of temperature. Process Biochem 36(5):431–439. CrossRefGoogle Scholar
  4. Aksu Z, Yener J (1998) Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge. Process Biochem 33(6):649–655. CrossRefGoogle Scholar
  5. Alther G (2002) Using organoclays to enhance carbon filtration. Waste Manag 22(5):507–513. CrossRefGoogle Scholar
  6. Antizar-Ladislao B, Galil N (2004) Biosorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in a sandy aquifer. Water Res 38(2):267–276. CrossRefGoogle Scholar
  7. Bayramoglu G, Celik G, Arica M (2006) Biosorption of reactive blue 4 dye by native and treated fungus Phanerocheate chrysosporium: batch and continuous flow system studies. J Hazard Mater 137(3):1689–1697. CrossRefGoogle Scholar
  8. Bayramoglu G, Gursel I, Tunali Y, Arica M (2009) Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets. Bioresour Technol 100(10):2685–2691. CrossRefGoogle Scholar
  9. Benoit P, Barriuso E, Calvet R (1998) Biosorption characterization of herbicides, 2,4-D and atrazine, and two chlorophenols on fungal mycelium. Chemosphere 47:1271–1282CrossRefGoogle Scholar
  10. Boróvko M (2002) Adsorption on heterogeneous surfaces. In: Tóth J, Dekker M (eds) Adsorption: theory, modeling and analysis. Marcel and Dekker Inc., New York, p 105–173Google Scholar
  11. Broholm MM, Erik A (2000) Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions. J Contam Hydrol 44(3-4):239–273. CrossRefGoogle Scholar
  12. Calace N, Nardi E, Petronio B, Pietroletti M (2002) Adsorption of phenols by papermill sludges. Environ Pollut 118(3):315–319. CrossRefGoogle Scholar
  13. Cavazzini A, Bardin G, Kaczmarski K, Szabelski P, Al-Bokari M, Guiochon G (2002) Adsorption equilibria of butyl- and amylbenzene on monolithic silica-based columns. J Chromatogr A 957(2):111–126. CrossRefGoogle Scholar
  14. Chang J, Hong J (1994) Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (RIP84). Biotechnol Bioeng 44(8):999–1006. CrossRefGoogle Scholar
  15. Cruz C, da Costa A, Henriques C, Luna A (2004) Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp biomass. Bioresour Technol 91(3):249–257. CrossRefGoogle Scholar
  16. Dékány I, Berger F (2002) Adsorption liquid mixtures on solid surfaces. In: Tóth J, Dekker M (eds) Adsorption: theory, modeling and analysis. Marcel and Dekker Inc., New York, p 269–298Google Scholar
  17. Denizli A, Ozkan G, Ucar M (2001) Removal of chlorophenols from aquatic systems with dye-affinity microbeads. Sep Purif Technol 24(1-2):255–262. CrossRefGoogle Scholar
  18. Denizli A, Okan G, Ucar M (2002) Dye-affinity microbeads for removal of phenols and nitrophenols from aquatic systems. J Appl Polym Sci 83(11):2411–2418. CrossRefGoogle Scholar
  19. Denizli A, Cihangir N, Rad A, Taner M, Alsancak G (2004) Removal of chlorophenols from synthetic solutions using Phanerochaete chrysosporium. Process Biochem 39(12):2025–2030. CrossRefGoogle Scholar
  20. Fagundes-Klen M, Ferri P, Martins T, Tavares C, Silva E (2007) Equilibrium study of the binary mixture of cadmium-zinc ions biosorption by the Sargassum filipendula species using adsorption isotherms models and neural network. Biochem Eng J 34(2):136–146. CrossRefGoogle Scholar
  21. Farkas V, Felinger A, Hegedűsova A, Dékány I, Pernyeszi T (2013) Comparative study of kinetics and equilibrium of phenol biosorption on immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solution. Colloids Surf B: Biointerfaces 103:381–390. CrossRefGoogle Scholar
  22. Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2-3):616–645. CrossRefGoogle Scholar
  23. Gadd G, White C (1989) Removal of thorium from simulated acid process streams by fungal biomass. Biotechnol Bioeng 33(5):592–597. CrossRefGoogle Scholar
  24. Gupta V, Srivastava S, Tyagi R (2000) Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Res 34(5):1543–1550. CrossRefGoogle Scholar
  25. Hafez N, Abdalla S, Ramadan Y (1998) Accumulation of phenol by Potamogeton crispus from aqueous industrial waste. Bull Environ Contam Toxicol 60(6):944–948. CrossRefGoogle Scholar
  26. Hailei W, Li P, Qianlong J, Ge Q (2014) Specific aerobic granules can be developed in a completely mixed tank reactor by bioaugmentation using micro-mycelial pellets of Phanerochaete chrysosporium. Environmental. Biotechnology 98:2687–2697Google Scholar
  27. Harrison F, Katti S (1990) Hazards of linearization of Langmuir’s model. Chemom Intell Lab Syst 9(3):249–255. CrossRefGoogle Scholar
  28. He K, Chen G, Zeng G, Huang Z, Guo Z, Huang T, Peng M, Shi J, Hu L (2017) Applications of white rot fungi in bioremediation with nanoparticles and biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 101(12):4853–4862. CrossRefGoogle Scholar
  29. Iqbal M, Saeed A (2007) Biosorption of reactive dye by loofa sponge-immobilized fungal biomass of Phanerochaete chrysosporium. Process Biochem 42(7):1160–1164. CrossRefGoogle Scholar
  30. Iqbal M, Saeed A, Zafar S (2007) Hybrid biosorbent: an innovative matrix to enhance the biosorption of cd(II) from aqueous solution. J Hazard Mater 148(1-2):47–55. CrossRefGoogle Scholar
  31. Jiang H, Fang Y, Fu Y, Guo Q-X (2003) Studies on the extraction of phenol in wastewater. J Hazard Mater B 101(2):179–190. CrossRefGoogle Scholar
  32. Khan A, AlBahri T, AlHaddad A (1997) Adsorption of phenol based organic pollutants on activated carbon from multi-component dilute aqueous solutions. Water Res 31(8):2102–2112. CrossRefGoogle Scholar
  33. Kibret M, Somitsch W, Robra KH (2000) Characterization of a phenol degrading mixed population by enzyme assay. Water Res 34(4):1127–1134. CrossRefGoogle Scholar
  34. Kirk T, Schultz E, Connors W, Lorenz L, Zeikus J (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117(3):277–285. CrossRefGoogle Scholar
  35. Mangir M, Ehrlich W (1989) Evidence for a cadmium-binding-protein in Saccharomyces cerevisiae. Chemosphere 19(8-9):1261–1267. CrossRefGoogle Scholar
  36. Nadavala S, Swayampakula K, Boddu V, Abburi K (2009) Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan-calcium alginate blended beads. J Hazard Mater 162(1):482–489. CrossRefGoogle Scholar
  37. Navarro A, Portales R, Sun-Kou M, Llanos B (2008) Effect of pH on phenol biosorption by marine seaweeds. J Hazard Mater 156(1-3):405–411. CrossRefGoogle Scholar
  38. Portela JR, Nebot E, de la Ossa EM (2001) Kinetic comparison between subcritical and supercritical water oxidation of phenol. Chem Eng J 81(1-3):287–299. CrossRefGoogle Scholar
  39. Rao J, Viraraghavan T (2002) Biosorption of phenol from an aqueous solution by Aspergillus niger biomass. Bioresour Technol 85(2):165–171. CrossRefGoogle Scholar
  40. Silva C, Faria J (2009) Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol-gel TiO2 under UV irradiation. J Mol Catal A Chem 305(1-2):147–154. CrossRefGoogle Scholar
  41. Singhal V, Kumar A, Rai JPN (2005) Bioremediation of pulp and paper mill effluent with Phanerochaete chrysosporium. J Environ Microbiol 26(3):525–529Google Scholar
  42. Thawornchaisit U, Pakulanon K (2007) Application of dried sewage sludge as phenol biosorbent. Bioresour Technol 98(1):140–144. CrossRefGoogle Scholar
  43. Volesky H, Holan Z (1995) Biosorption of heavy metals. Biotechnol Prog 11:239–250CrossRefGoogle Scholar
  44. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451. CrossRefGoogle Scholar
  45. Wang J-P, Feng H-M, Yu H-Q (2007) Analysis of adsorption chracteristics of 2,4-dichlorophenol from aqueous solutiony by activated carbon fiber. J Hazard Mater 144(1-2):200–207. CrossRefGoogle Scholar
  46. Wu J, Yu H-Q (2006a) Biosorption of phenol and chlorophenols from aqueous solutions by fungal mycelia. Process Biochem 41(1):44–49. CrossRefGoogle Scholar
  47. Wu J, Yu H-Q (2006b) Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: isotherms, kinetics and thermodynamics. J Hazard Mater B 137(1):498–508. CrossRefGoogle Scholar
  48. Wu J, Yu H-Q (2007) Biosorption of 2,4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solutions. Bioresour Technol 98(2):253–259. CrossRefGoogle Scholar
  49. Wu J, Yu H-Q (2008) Biosorption of 2,4-dichlorophenol from aqueous solutions by immobilized Phanerochaete chrysosporium biomass in a fixed-bed column. Chem Eng J 138(1-3):128–135. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Analytical and Environmental Chemistry, Faculty of SciencesUniversity of PécsPécsHungary
  2. 2.Environmental Analytical and Geoanalytical Research Group, Szentágothai Research CenterUniversity of PécsPécsHungary
  3. 3.MTA-SZTE Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary
  4. 4.Department of Medical Chemistry, Faculty of MedicineUniversity of SzegedSzegedHungary

Personalised recommendations