Abstract
Conventional wastewater treatment plants (WWTPs) are not able to remove completely some emerging contaminants, such as residual pharmaceutical compounds (PCs) with potential ecotoxicity to water bodies. An advanced bio-oxidation process (ABOP) using white-rot fungi (WRF) has been proposed as alternative biological treatment for degradation of non-biodegradable compounds. A synthetic and real wastewater spiked with 12 PCs at 50 μg L−1 was treated by means of ABOP based on WRF in a rotating biological contactor (RBC) at 1 day of hydraulic retention time (HRT). The ABOP achieved a remarkable biological performance in terms of TOC removal and reduction of N-NH4 + and P-PO4 3− nutrients. Likewise, 5 of the 12 PCs were eliminated with removal efficiencies ranging from 80 to 95%, whereas 6 of 12 PCs were eliminated with removal values ranging from 50 to 70%. The anaerobic digestion of the fungal sludge generated upon the treatment was also evaluated, obtaining a methane yield of 250 mL CH4 gVS −1. These results evidenced that the proposed ABOP is a promising alternative for the sustainable wastewater treatment of urban effluents, combining advanced oxidation with biological operation for the removal of emerging PCs and energy recovery.
This is a preview of subscription content, access via your institution.





References
Afonso-Olivares C, Čadková T, Sosa-Ferrera Z, Santana-Rodríguez JJ, Nováková L (2017) Simplified solid-phase extraction procedure combined with liquid chromatography tandem–mass spectrometry for multiresidue assessment of pharmaceutical compounds in environmental liquid samples. J Chromatogr 1487:54–63. https://doi.org/10.1016/j.chroma.2017.01.059
Al Aukidy M, Verlicchi P, Jelic A, Petrovic M, Barceló D (2012) Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci Total Environ 438:15–25. https://doi.org/10.1016/j.scitotenv.2012.08.061
Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, Van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927–934. https://doi.org/10.2166/wst.2009.040
APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC
Archer E, Petrie E, Zasprzyk-Horderm B, Wofaardt GG (2017) The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 174:437–446. https://doi.org/10.1016/j.chemosphere.2017.01.101
Badia-Fabregat M, Lucas D, Alcina Pereira M, Alves M, Pennanen T, Fritze H, Rodríguez-Mozaz S, Barcelò D, Vicent T, Caminal G (2016) Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment. Appl Microbiol Biotechnol 100(5):2401–2415. https://doi.org/10.1007/s00253-015-7105-0
Badia-Fabregat M, Lucas D, Tuomivirta T, Fritze H, Pennanen T, Rodríguez-Mozaz S, Barcelò D, Caminal G, Vicent T (2017) Study of the effect of the bacterial and fungal communities present in real wastewater effluents on the performance of fungal treatments. Sci Total Environ 570:366–377. https://doi.org/10.1016/j.scitotenv.2016.11.088
Bollmann AF, Seitz W, Prasse C, Lucke T, Schulz W, Ternes T (2016) Occurrence and fate of amisulpride, sulpiride, and lamotrigine in municipal wastewater treatment plants with biological treatment and ozonation. J Hazar Mater 320:204–215. https://doi.org/10.1016/j.jhazmat.2016.08.022
Bouallagui H, Touhami Y, Ben Cheikh R, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40(3-4):989–995. https://doi.org/10.1016/j.procbio.2004.03.007
Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S, Barcelò D, Marco-Urrea E, Vicent T, Sarrà M (2013) Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res 47(14):5200–5210. https://doi.org/10.1016/j.watres.2013.06.007
Cruz-Morató C, Lucas D, Llorca M, Rodríguez-Mozaz S, Gorga M, Petrovic M, Barcelò D, Vicent T, Sarrà M, Marco-Urrea E (2014) Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci Total Environ 493:365–376. https://doi.org/10.1016/j.scitotenv.2014.05.117
Gómez-Toribio V, García-Martín AB, Martínez MJ, Martínez AT, Guillén F (2009) Enhancing the production of hydroxyl radicals by Pleurotus eryngii via Quinone redox cycling for pollutant. Appl Environ Microbiol 75(12):3954–3962. https://doi.org/10.1128/AEM.02138-08
Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 111:297–317. https://doi.org/10.1016/j.watres.2017.01.005
Han-Tran N, Yew-Hoong Gin K (2017) Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant. Sci Total Environ 599-600:1503–1516. https://doi.org/10.1016/j.scitotenv.2017.05.097
Hassard F, Biddle J, Cartmell E, Jefferson B, Tyrrel S, Stephenson T (2015) Rotating biological contactors for wastewater treatment – a review. Process Saf Environ 94:285–306. https://doi.org/10.1016/j.psep.2014.07.003
Hom-Diaz A, Baldi F, Blánquez P, Lombardi L, Martín-González L, Vicent T (2016) Exhausted fungal biomass as a feedstock for increasing methane production during the anaerobic digestion of organic wastes. Waste Biomass Valori 7(2):307–315. https://doi.org/10.1007/s12649-015-9450-8
Jelic A, Cruz-Morató C, Marcos-Urrea E, Sarrà M, Pérez S, Vicent T, Petrovic M, Barceló D (2012) Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Res 46:955–964. https://doi.org/10.1016/j.watres.2011.11.063
Kay P, Hughes SR, Ault JR, Ashcroft AE, Brown LE (2017) Widespread, routine occurrence of pharmaceuticals in sewage effluent, combined sewer overflows and receiving waters. Environ Pollut 220(Pt B):1447–1455. https://doi.org/10.1016/j.envpol.2016.10.087
Lucas D, Castellet-Rovira F, Villagrasa M, Badia-Fabregat M, Barceló D, Vicent T, Caminal G, Sarrá M, Rodriguez-Mozaz S (2018) The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Sci Total Environ 610-611:1147–1153. https://doi.org/10.1016/j.scitotenv.2017.08.118
Marco-Urrea E, Pérez-Trujillo M, Vicent T, Caminal G (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74(6):765–772. https://doi.org/10.1016/j.chemosphere.2008.10.040
Marco-Urrea E, Radjenović J, Caminal G, Petrović M, Vicent T, Barceló D (2010) Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor. Water Res 44(2):521–532. https://doi.org/10.1016/j.watres.2009.09.049
Martin J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2012) Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. J Hazard Mater 239-240:40–47. https://doi.org/10.1016/j.jhazmat.2012.04.068
Mendoza A, Zonja B, Mastroianni N, Negreira N, López de Alda M, Pérez S, Barcelò D, Gil A, Valcárcel Y (2016) Drugs of abuse, cytostatic drugs and iodinated contrast media in tap water from the Madrid region (central Spain):a case study to analyse their occurrence and human health risk characterization. Environ Int 86:107–118. https://doi.org/10.1016/j.envint.2015.11.001
Mir-Tutusaus JA, Parladé E, Llorca M, Villagrasa A, Barceló D, Rodriguez-Mozaz S, Martinez-Alonso M, Gaju N, Caminal G, Sarrà M (2017) Pharmaceuticals removal and microbial community assesment in a continuous fungal treatment of non-sterile real hospital wastewater after coagulation-flocculation pretreatment. Water Res 116:65–75. https://doi.org/10.1016/j.watres.2017.03.005
Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination: a review. Sci Total Environ 409(20):4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061
Pariente MI, Siles JA, Molina R, Botas JA, Melero JA, Martinez F (2013) Treatment of an agrochemical wastewater by integration of heterogeneous catalytic wet hydrogen peroxide oxidation and rotating biological contactors. Chem Eng J 226:409–415. https://doi.org/10.1016/j.cej.2013.04.081
Park KY, Jang HM, Park MR, Lee K, Kim D, Kim YM (2016) Combination of different substrates to improve anaerobic digestion of sewage sludge in a wastewater treatment plant. Int Biodeterior Biodegradation 109:73–77. https://doi.org/10.1016/j.ibiod.2016.01.006
Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Tech 36(1):1–84. https://doi.org/10.1080/10643380500326564
Rodriguez-Garcia G, Molinos-Senante M, Hospido A, Hernández-Sancho F, Moreira MT, Feijoo G (2011) Environmental and economic profile of six typologies of wastewater treatment plants. Water Res 45(18):5997–6010. https://doi.org/10.1016/j.watres.2011.08.053
Rosal R, Rodriguez A, Perdigon-Melon JA, Petre A, Garcia-Calvo E, Gomez MJ, Agüera A, Fernandez-Alba AR (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44(2):578–588. https://doi.org/10.1016/j.watres.2009.07.004
Segura Y, Puyol D, Ballesteros L, Martínez F, Melero JA (2016) Wastewater sludges pretreated by different oxidation systems at mild conditions to promote the biogas formation in anaerobic processes. Environ Sci Pollut Res Int 23(23):24393–24401. https://doi.org/10.1007/s11356-016-7535-y
Tchobanoglous G, Stensel HD, Tsuchihashi R, Burton FL (2002) Wastewater engineering: treatment and reuse, Metcalf and Eddy Inc, 4th edn. McGraw-Hill Education, New York
Thiebault T, Boussafir M, Le Milbeau C (2017) Occurrence and removal efficiency of pharmaceuticals in an urban wastewater treatment plant: mass balance, fate and consumption assessment. J Environ Chem Eng 5(3):2894–2902. https://doi.org/10.1016/j.jece.2017.05.039
Valcárcel Y, Martínez F, Gónzalez-Alonso S, Segura Y, Catalá M, Molina R, Montero-Rubio JC, Mastroianni N, López de Alda M, Postigo C, Barcelò D (2012) Drugs of abuse in surface and tap waters of the Tagus River basin: heterogeneous photo-Fenton process is effective in their degradation. Environ Int 41:35–43. https://doi.org/10.1016/j.envint.2011.12.006
Vasiliadou IA, Molina R, Martínez F, Melero JA (2013) Biological removal of pharmaceutical and personal care products by a mixed microbial culture: sorption, desorption and biodegradation. Biochem Eng J 81:108–119. https://doi.org/10.1016/j.bej.2013.10.010
Vasiliadou IA, Sánchez-Vázquez R, Molina R, Martínez F, Melero JA, Bautista LF, Iglesias J, Morales G (2016) Biological removal of pharmaceutical compounds using white-rot fungi with concomitant FAME production of the residual biomass. J Environ Manag 180:228–237. https://doi.org/10.1016/j.jenvman.2016.05.035
Verlicchi P, Galleti A, Petrovic M, Barcelò D, Al Aukidy M, Zambello E (2013) Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed — analysis of their respective contributions. Sci Total Environ 454:411–425. https://doi.org/10.1016/j.scitotenv.2013.03.044
Wei D, Houtman CJ, Kapich AN, Hunt CG, Cullen D, Hammel KE (2010) Laccase and its role in production of extracellular reactive oxygen species during wood decay by the Brown rot basidiomycete Postia placenta. Appl Environ Microbiol 76(7):2091–2097. https://doi.org/10.1128/AEM.02929-09
Woo-Sik Jo MJK, Seong-Yong C, Young-Bok Y, Soon-Ja S, Hee-Young J (2010) Culture conditions for mycelial growth of Coriolus versicolor. Mycobiology 38(3):195–202. https://doi.org/10.4489/MYCO.2010.38.3.195
Yang S, Hai FI, Nghiem LD, Nguyen LN, Roddick F, Price WE (2013a) Removal of bisphenol a and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int Biodeterior Biodegradation 85:483–490. https://doi.org/10.1016/j.ibiod.2013.03.012
Yang S, Hai FI, Nghiem LD, Price WE, Roddick F, Moreira MT, Magram SF (2013b) Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol 141:97–108. https://doi.org/10.1016/j.biortech.2013.01.173
Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag 33(12):2653–2658. https://doi.org/10.1016/j.wasman.2013.05.014
Zenker A, Cicero MR, Prestinaci F, Bottoni P, Carere M (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manag 133:378–387. https://doi.org/10.1016/j.jenvman.2013.12.017
Zhang Y, Geiβen S-V (2012) Elimination of carbamazepine in a non-sterile fungal bioreactor. Bioresour Technol 112:221–227. https://doi.org/10.1016/j.biortech.2012.02.073
Acknowledgements
The authors gratefully acknowledge the financial support of Regional Government of Madrid provided through project REMTAVARES (S2013/MAE-2716) and the European Social Fund and Spanish Ministry of Economy and Competitiveness (MINECO) in the frame of the collaborative international consortium WATERJPI2013-MOTREM of the Water Challenges for a Changing World Joint Programming Initiative (Water JPI) Pilot Call.
Author information
Affiliations
Corresponding author
Additional information
Responsible editor: Vítor Pais Vilar
Rights and permissions
About this article
Cite this article
del Álamo, A.C., Pariente, M.I., Vasiliadou, I. et al. Removal of pharmaceutical compounds from urban wastewater by an advanced bio-oxidation process based on fungi Trametes versicolor immobilized in a continuous RBC system. Environ Sci Pollut Res 25, 34884–34892 (2018). https://doi.org/10.1007/s11356-017-1053-4
Received:
Accepted:
Published:
Issue Date:
Keywords
- White-rot fungi
- Rotating biological contactor
- Pharmaceutical compounds
- Bio-methanogenic potential tests
- Urban wastewater