Dinoflagellate cyst abundance is positively correlated to sediment organic carbon in Sydney Harbour and Botany Bay, NSW, Australia

Abstract

There is growing public concern about the global expansion of harmful algal bloom species (HABs), with dinoflagellate microalgae comprising the major portion of the harmful taxa. These motile, unicellular organisms have a lifecycle involving sexual reproduction and resting cyst formation whereby cysts can germinate from sediments and ‘seed’ planktonic populations. Thus, investigation of dinoflagellate cyst (dinocyst) distribution in sediments can provide significant insights into HAB dynamics and contribute to indices of habitat quality. Species composition and abundance of dinocysts in relation to sediment characteristics were studied at 18 stations in two densely populated temperate Australian estuaries, Sydney Harbour (Parramatta River/Port Jackson; PS) and Botany Bay (including Georges River; GB). Eighteen dinocyst taxa were identified, dominated by Protoceratium reticulatum and Gonyaulax sp.1 in the PS estuary, together with Archaeperidinium minutum and Gonyaulax sp.1 in the GB estuary. Cysts of Alexandrium catenella, which is one of the causative species of paralytic shellfish poisoning (PSP), were also detected in both estuaries. Out of the measured sediment characteristics (TOC, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn and polycyclic aromatic hydrocarbons), TOC was the parameter explaining most of the variation in dinocyst assemblages and was positively correlated to most of the heavy metals. Given the significant relationship between sediment TOC and dinocyst abundance and heavy metal concentrations, this study suggests that sediment TOC could be broadly used in risk management for potential development of algal blooms and sediment contamination in these estuaries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ajani P, Lee R, Pritchard T, Krogh M (2001) Phytoplankton dynamics at a long-term coastal station off Sydney, Australia. J Coast Res:60–73

  2. Ajani P, Brett S, Krogh M, Scanes P, Webster G, Armand L (2013) The risk of harmful algal blooms (HABs) in the oyster-growing estuaries of New South Wales, Australia. Environ Monit Assess 185(6):5295–5316. https://doi.org/10.1007/s10661-012-2946-9

    CAS  Article  Google Scholar 

  3. Akselman R, Krock B, Alpermann TJ, Tillmann U, Marcela Borel C, Almandoz GO, Ferrario ME (2015) Protoceratium reticulatum (Dinophyceae) in the austral Southwestern Atlantic and the first report on YTX-production in shelf waters of Argentina. Harmful Algae 45:40–52. https://doi.org/10.1016/j.hal.2015.03.001

    CAS  Article  Google Scholar 

  4. Anderson DM (1980) Effects of temperature conditioning on development and germination of Gonyaulax Tamarensis (Dinophyceae) hypnozygotes. J Phycol 16(2):166–172. https://doi.org/10.1111/j.1529-8817.1980.tb03013.x

    Article  Google Scholar 

  5. Anderson DM (1997) Bloom dynamics of toxic Alexandrium species in the northeastern US. Limnol Oceanogr 42(5part2):1009–1022. https://doi.org/10.4319/lo.1997.42.5_part_2.1009

    Article  Google Scholar 

  6. Anderson DM (1998) Physiology and bloom dynamics of toxic Alexandrium species, with emphasis on life cycle transitions. Nato Asi Series G Ecological Sciences 41:29–48

    Google Scholar 

  7. Anderson DM, Taylor CD, Armbrust EV (1987) The effects of darkness and anaerobiosis on dinoflagellate cyst germination. Limnol Oceanogr 32(2):340–335. https://doi.org/10.4319/lo.1987.32.2.0340

    CAS  Article  Google Scholar 

  8. Anderson DM, Keafer BA, McGillicuddy DJ Jr, Mickelson MJ, Keay KE, Scott Libby P, Manning JP, Mayo CA, Whittaker DK, Michael Hickey J, He R, Lynch DR, Smith KW (2005) Initial observations of the 2005 Alexandrium fundyense bloom in southern New England: general patterns and mechanisms. Deep-Sea Res II Top Stud Oceanogr 52(19-21):2856–2876. https://doi.org/10.1016/j.dsr2.2005.09.004

    Article  Google Scholar 

  9. Aydın H, Matsuoka K, Minareci E (2011) Distribution of dinoflagellate cysts in recent sediments from Izmir Bay (Aegean Sea, Eastern Mediterranean). Mar Micropaleontol 80(1-2):44–52. https://doi.org/10.1016/j.marmicro.2011.03.004

    Article  Google Scholar 

  10. Balch WM, Reid PC, Surrey-Gent SC (1983) Spatial and temporal variability of dinoflagellate cyst abundance in a tidal estuary. Can J Fish Aquat Sci 40(S1):s244–s261. https://doi.org/10.1139/f83-287

    Article  Google Scholar 

  11. Binder BJ, Anderson DM (1986) Green light-mediated photomorphogenesis in a dinoflagellate resting cyst. Nature 322(6080):659–661. https://doi.org/10.1038/322659a0

    Article  Google Scholar 

  12. Birch G (1996) Sediment-bound metallic contaminants in Sydney’s estuaries and adjacent offshore, Australia. Estuar Coast Shelf S 42(1):31–44. https://doi.org/10.1006/ecss.1996.0003

    CAS  Article  Google Scholar 

  13. Blanco J (1995) Cyst production in four species of neritic dinoflagellates. J Plankton Res 17(1):165–182. https://doi.org/10.1093/plankt/17.1.165

    Article  Google Scholar 

  14. Blanton M, Gardiner W, Dirkes R (1995) Environmental monitoring of Columbia River sediments: grain-size distribution and contaminant association. Pacific Northwest Lab, Richland

    Google Scholar 

  15. Bolch C (1997) The use of sodium polytungstate for the separation and concentration of living dinoflagellate cysts from marine sediments. Phycologia 36(6):472–478. https://doi.org/10.2216/i0031-8884-36-6-472.1

    Article  Google Scholar 

  16. Bouimetarhan I, Marret F, Dupont L, Zonneveld K (2009) Dinoflagellate cyst distribution in marine surface sediments off West Africa (17–6 N) in relation to sea-surface conditions, freshwater input and seasonal coastal upwelling. Mar Micropaleontol 71(3-4):113–130. https://doi.org/10.1016/j.marmicro.2009.02.001

    Article  Google Scholar 

  17. Bravo I, Garcés E, Diogène J, Fraga S, Sampedro N, Figueroa RI (2006) Resting cysts of the toxigenic dinoflagellate genus Alexandrium in recent sediments from the Western Mediterranean coast, including the first description of cysts of A. kutnerae and A. peruvianum. Eur J Phycol 41(3):293–302. https://doi.org/10.1080/09670260600810360

    Article  Google Scholar 

  18. Brown J, Fernand L, Horsburgh K, Hill A, Read J (2001) Paralytic shellfish poisoning on the east coast of the UK in relation to seasonal density-driven circulation. J Plankton Res 23(1):105–116. https://doi.org/10.1093/plankt/23.1.105

    Article  Google Scholar 

  19. Buchanan JB, Longbottom MR (1970) The determination of organic matter in marine muds: the effect of the presence of coal and the routine determination of protein. J Exp Mar Biol Ecol 5(2):158–169. https://doi.org/10.1016/0022-0981(70)90014-6

    CAS  Article  Google Scholar 

  20. Dafforn KA, Simpson SL, Kelaher BP, Clark GF, Komyakova V, Wong CK, Johnston EL (2012) The challenge of choosing environmental indicators of anthropogenic impacts in estuaries. Environ Pollut 163:207–217. https://doi.org/10.1016/j.envpol.2011.12.029

    CAS  Article  Google Scholar 

  21. Dale B (1976) Cyst formation, sedimentation, and preservation: factors affecting dinoflagellate assemblages in recent sediments from Trondheimsfjord, Norway. Rev Palaeobot Palyno 22(1):39–60. https://doi.org/10.1016/0034-6667(76)90010-5

    Article  Google Scholar 

  22. Dale B (1983) Dinoflagellate resting cysts: benthic plankton. In: Fryxell GA (ed) Survial strategies of the algae. Cambridge University Press, Cambridge

    Google Scholar 

  23. Dale B (2001) Marine dinoflagellate cysts as indicators of eutrophication and industrial pollution: a discussion. Sci Total Environ 264(3):235–240. https://doi.org/10.1016/S0048-9697(00)00719-1

    CAS  Article  Google Scholar 

  24. De Falco G, Magni P, Teräsvuori L, Matteucci G (2004) Sediment grain size and organic carbon distribution in the Cabras lagoon (Sardinia, western Mediterranean). Chem Ecol 20(sup1):367–377. https://doi.org/10.1080/02757540310001629189

    Article  Google Scholar 

  25. Di Toro DM, Zarba CS, Hansen DJ et al (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583

    Article  Google Scholar 

  26. Doblin MA, Dobbs FC (2006) Setting a size-exclusion limit to remove toxic dinoflagellate cysts from ships’ ballast water. Mar Pollut Bull 52(3):259–263. https://doi.org/10.1016/j.marpolbul.2005.12.014

    CAS  Article  Google Scholar 

  27. Estrada M, Solé J, Anglès S, Garcés E (2010) The role of resting cysts in Alexandrium minutum population dynamics. Deep-Sea Res II Top Stud Oceanogr 57(3-4):308–321. https://doi.org/10.1016/j.dsr2.2009.09.007

    CAS  Article  Google Scholar 

  28. Farrell H, Brett S, Ajani P, Murray S (2013) Distribution of the genus Alexandrium (Halim) and paralytic shellfish toxins along the coastline of New South Wales, Australia. Mar Pollut Bull 72(1):133–145. https://doi.org/10.1016/j.marpolbul.2013.04.009

    CAS  Article  Google Scholar 

  29. Garcés E, Masó M, Camp J (1999) A recurrent and localized dinoflagellate bloom in a Mediterranean beach. J Plankton Res 21(12):2373–2391. https://doi.org/10.1093/plankt/21.12.2373

    Article  Google Scholar 

  30. Gibbs R, Tshudy D, Konwar L, Martin J (1989) Coagulation and transport of sediments in the Gironde Estuary. Sedimentology 36(6):987–999. https://doi.org/10.1111/j.1365-3091.1989.tb01536.x

    Article  Google Scholar 

  31. Hallegraeff GM (1992) Harmful algal blooms in the Australian region. Mar Pollut Bull 25(5-8):186–190. https://doi.org/10.1016/0025-326X(92)90223-S

    Article  Google Scholar 

  32. Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32(2):79–99. https://doi.org/10.2216/i0031-8884-32-2-79.1

    Article  Google Scholar 

  33. Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46(2):220–235. https://doi.org/10.1111/j.1529-8817.2010.00815.x

    CAS  Article  Google Scholar 

  34. Hallegraeff GM, Bolch CJ (1991) Transport of toxic dinoflagellate cysts via ships' ballast water. Mar Pollut Bull 22(1):27–30. https://doi.org/10.1016/0025-326X(91)90441-T

    Article  Google Scholar 

  35. Hallegraeff G, Gollasch S (2006) Anthropogenic introductions of microalgae. Springer Berlin Heidelberg 189:379–390

  36. Hallegraeff GM, Anderson DM, Cembella AD, Enevoldsen HO (2003) Manual on harmful marine microalgae. Unesco

  37. Hatje V, Birch G, Hill D (2001) Spatial and temporal variability of particulate trace metals in Port Jackson Estuary, Australia. Estuar Coast Shelf S 53(1):63–77. https://doi.org/10.1006/ecss.2001.0792

    CAS  Article  Google Scholar 

  38. Head MJ (1996) Chapter 30. Modern dinoflagellate cysts and their biological affinities. Palynology: Principles Appl 3:1197–1248

    Google Scholar 

  39. Joyce LB, Pitcher GC, Randt A, Monteiro PMS (2005) Dinoflagellate cysts from surface sediments of Saldanha Bay, South Africa: an indication of the potential risk of harmful algal blooms. Harmful Algae 4(2):309–318. https://doi.org/10.1016/j.hal.2004.08.001

    Article  Google Scholar 

  40. Kim SY, Lim DI, Cho HJ (2012) Dinoflagellate cyst assemblages from the northern shelf sediments of the East China Sea: an indicator of marine productivity. Mar Micropaleontol 96–97:75–83

    Article  Google Scholar 

  41. Kröger K, Gardner JPA, Rowden AA, Wear RG (2006) Long-term effects of a toxic algal bloom on subtidal soft-sediment macroinvertebrate communities in Wellington Harbour, New Zealand. Estuar Coast Shelf S 67(4):589–604. https://doi.org/10.1016/j.ecss.2005.12.010

    Article  Google Scholar 

  42. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511615146

    Google Scholar 

  43. Marret F, de Vernal A (1997) Dinoflagellate cyst distribution in surface sediments of the southern Indian Ocean. Mar Micropaleontol 29(3-4):367–392. https://doi.org/10.1016/S0377-8398(96)00049-7

    Article  Google Scholar 

  44. Marret F, Zonneveld KA (2003) Atlas of modern organic-walled dinoflagellate cyst distribution. Rev Palaeobot Palyno 125(1-2):1–200. https://doi.org/10.1016/S0034-6667(02)00229-4

    Article  Google Scholar 

  45. Marret F, de Vernal A, Benderra F, Harland R (2001) Late Quaternary sea-surface conditions at DSDP Hole 594 in the southwest Pacific Ocean based on dinoflagellate cyst assemblages. J Quat Sci 16(7):739–751. https://doi.org/10.1002/jqs.648

    Article  Google Scholar 

  46. Matsuoka K (1999) Eutrophication process recorded in dinoflagellate cyst assemblages-a case of Yokohama Port, Tokyo Bay, Japan. Sci Total Environ 231(1):17–35. https://doi.org/10.1016/S0048-9697(99)00087-X

    CAS  Article  Google Scholar 

  47. Matsuoka K, Fukuyo Y (2000) Technical guide for modern dinoflagellate cyst study. Asian Natural Environmental Science Center. The University of Tokyo Westpac-Hab/Westpac/Ioc

  48. Mayer LM (1994) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem Geol 114(3-4):347–363. https://doi.org/10.1016/0009-2541(94)90063-9

    CAS  Article  Google Scholar 

  49. McGillicuddy D, Signell R, Stock C, Keafer B, Keller M, Hetland R, Anderson D (2003) A mechanism for offshore initiation of harmful algal blooms in the coastal Gulf of Maine. J Plankton Res 25(9):1131–1138. https://doi.org/10.1093/plankt/25.9.1131

    Article  Google Scholar 

  50. McMinn A (1990) Recent dinoflagellate cyst distribution in eastern Australia. Rev Palaeobot Palyno 65(1-4):305–310. https://doi.org/10.1016/0034-6667(90)90080-3

    Article  Google Scholar 

  51. McMinn A (1991) Recent dinoflagellate cysts from estuaries on the central coast of New South Wales, Australia. Micropaleontology 37(3):269–287. https://doi.org/10.2307/1485890

    Article  Google Scholar 

  52. McMinn A (1992a) Quaternary coastal evolution and vegetation history of northern New South Wales, Australia, based on dinoflagellates and pollen. Quat Res 38(03):347–358. https://doi.org/10.1016/0033-5894(92)90043-I

    Article  Google Scholar 

  53. McMinn A (1992b) Recent and late Quaternary dinoflagellate cyst distribution on the continental shelf and slope of southeastern Australia. Palynology 16(1):13–24. https://doi.org/10.1080/01916122.1992.9989404

    Article  Google Scholar 

  54. Nehring S (1994) Spatial distribution of dinoflagellate resting cysts in recent sediments of Kiel Bight, Germany (Baltic Sea). Ophelia 39(2):137–158. https://doi.org/10.1080/00785326.1994.10429540

    Article  Google Scholar 

  55. Nuzzo L, Montresor M (1999) Different excystment patterns in two calcareous cyst-producing species of the dinoflagellate genus Scrippsiella. J Plankton Res 21(10):2009–2018. https://doi.org/10.1093/plankt/21.10.2009

    Article  Google Scholar 

  56. Pollard DA, Pethebridge R (2002) Report on Port of Botany Bay introduced marine pest species survey. NSW Fisheries Office of Conservation

  57. Pospelova V, Chmura GL, Walker HA (2004) Environmental factors influencing the spatial distribution of dinoflagellate cyst assemblages in shallow lagoons of southern New England (USA). Rev Palaeobot Palyno 128(1-2):7–34. https://doi.org/10.1016/S0034-6667(03)00110-6

    Article  Google Scholar 

  58. Pospelova V, Chmura GL, Warren SB, Latimer JS (2005) Spatial distribution of modern dinoflagellate cysts in polluted estuarine sediments from Buzzards Bay (Massachusetts, USA) embayments. Mar Ecol Prog Ser 292:23–40. https://doi.org/10.3354/meps292023

    CAS  Article  Google Scholar 

  59. Reid PC (1975) A regional sub-division of dinoflagellate cysts around the Britishisles. New Phytol 75(3):589–603. https://doi.org/10.1111/j.1469-8137.1975.tb01425.x

    Article  Google Scholar 

  60. Richerol T, Pienitz R, Rochon A (2012) Modern dinoflagellate cyst assemblages in surface sediments of Nunatsiavut fjords (Labrador, Canada). Mar Micropaleontol 88:54–64

    Article  Google Scholar 

  61. Rochon A, Vernal A, Turon J-L, Matthießen J, Head M (1999) Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-surface parameters. Am Assoc Stratigraphic Palynol Contrib Series 35:1–146

    Google Scholar 

  62. Roué M, Darius HT, Picot S, Ung A, Viallon J, Gaertner-Mazouni N, Sibat M, Amzil Z, Chinain M (2016) Evidence of the bioaccumulation of ciguatoxins in giant clams (Tridacna maxima) exposed to Gambierdiscus spp. cells. Harmful Algae 57:78–87. https://doi.org/10.1016/j.hal.2016.05.007

    Article  Google Scholar 

  63. Rubino F, Belmonte M, Caroppo C, Giacobbe M (2010) Dinoflagellate cysts from surface sediments of Syracuse Bay (Western Ionian Sea, Mediterranean). Deep-Sea Res II Top Stud Oceanogr 57(3-4):243–247. https://doi.org/10.1016/j.dsr2.2009.09.011

    CAS  Article  Google Scholar 

  64. Secrieru D, Oaie G (2009) The relation between the grain size composition of the sediments from the NW Black Sea and their total organic carbon (TOC) content. GeoEcoMarina 15(1):5–11

    Google Scholar 

  65. Seidemann D (1991) Metal pollution in sediments of Jamaica Bay, New York, USA—an urban estuary. Environ Manag 15(1):73–81. https://doi.org/10.1007/BF02393839

    Article  Google Scholar 

  66. Shin HH, Yoon YH, Kim YO, Matsuoka K (2011) Dinoflagellate cysts in surface sediments from southern coast of Korea. Estuar Coast 34(4):712–725. https://doi.org/10.1007/s12237-011-9373-y

    CAS  Article  Google Scholar 

  67. Simpson SL, Batley GE, Chariton AA et al (2005) Handbook for sediment quality assessment. CSIRO, Sydney

    Google Scholar 

  68. Sonneman JA, Hill DRA (1997) A taxonomic survey of cyst-producing dinoflagellates from recent sediments of Victorian coastal waters, Australia. Bot Mar 40(1–6):149–178

    Google Scholar 

  69. Teodora Satta C, Anglès S, Garcés E, Lugliè A, Mario Padedda B, Sechi N (2010) Dinoflagellate cysts in recent sediments from two semi-enclosed areas of the Western Mediterranean Sea subject to high human impact. Deep-Sea Res II Top Stud Oceanogr 57(3-4):256–267. https://doi.org/10.1016/j.dsr2.2009.09.013

    Article  Google Scholar 

  70. Tippler C, Wright I, Hanlon A (2012) Is catchment imperviousness a keystone factor degrading urban waterways? A case study from a partly urbanised catchment (Georges River, south-eastern Australia). Water Air Soil Pollut 223(8):5331–5344. https://doi.org/10.1007/s11270-012-1283-5

    CAS  Article  Google Scholar 

  71. Valsecchi G, Gigliotti C, Farini A (1995) Microbial biomass, activity, and organic matter accumulation in soils contaminated with heavy metals. Biol Fertil Soils 20(4):253–259. https://doi.org/10.1007/BF00336086

    CAS  Article  Google Scholar 

  72. Wang ZH, Mu DH, Li YF, Cao Y, Zhang YJ (2011) Recent eutrophication and human disturbance in Daya Bay, the South China Sea: Dinoflagellate cyst and geochemical evidence. Estuar Coast Shelf S 92(3):403–414. https://doi.org/10.1016/j.ecss.2011.01.015

    CAS  Article  Google Scholar 

  73. Whittle K, Gallacher S (2000) Marine toxins. Br Med Bull 56(1):236–253. https://doi.org/10.1258/0007142001902914

    CAS  Article  Google Scholar 

  74. Zonneveld KA (1997) Dinoflagellate cyst distribution in surface sediments from the Arabian Sea (northwestern Indian Ocean) in relation to temperature and salinity gradients in the upper water column. Deep-Sea Res II Top Stud Oceanogr 44(6-7):1411–1443. https://doi.org/10.1016/S0967-0645(97)00007-6

    Article  Google Scholar 

  75. Zonneveld KA, Hoek RP, Brinkhuis H, Willems H (2001) Geographical distributions of organic-walled dinoflagellate cysts in surficial sediments of the Benguela upwelling region and their relationship to upper ocean conditions. Prog Oceanogr 48(1):25–72. https://doi.org/10.1016/S0079-6611(00)00047-1

    Article  Google Scholar 

  76. Zonneveld KA, Meier KS, Esper O, Siggelkow D, Wendler I, Willems H (2005) The (palaeo) environmental significance of modern calcareous dinoflagellate cysts: a review. Paläontol Z 79(1):61–77. https://doi.org/10.1007/BF03021754

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Marlene Zbinden for conducting the sediment organic carbon analyses and Gustaaf Hallegraeff for assistance with cyst identification. This study was supported by International Science and Technology Cooperation Program of China (No 2010DFA91150), a visiting fellowship from Shandong University and by the Plant Functional Biology and Climate Change Cluster, University of Technology Sydney.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Martina A. Doblin or Haiyan Pei.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Doblin, M.A., Dafforn, K.A. et al. Dinoflagellate cyst abundance is positively correlated to sediment organic carbon in Sydney Harbour and Botany Bay, NSW, Australia. Environ Sci Pollut Res 25, 5808–5821 (2018). https://doi.org/10.1007/s11356-017-0886-1

Download citation

Keywords

  • Dinoflagellate life cycle
  • Sydney Harbour
  • Risk management
  • Water quality
  • Redundancy analysis