Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 5, pp 4190–4196 | Cite as

How tapeworm infection and consumption of a Cd and Zn hyperaccumulating plant may affect Cu, Fe, and Mn concentrations in an animal—a plant consumer and tapeworm host

  • Ivana JankovskáEmail author
  • Vladislav Sloup
  • Jiřina Száková
  • Jan Magdálek
  • Stanislava Nechybová
  • Pavla Peřinková
  • Iva Langrová
Research Article

Abstract

This study evaluated the effects of a hyperaccumulator plant (Arabidopsis halleri), containing surplus of cadmium (Cd) and zinc (Zn) and being an admixture to the rat feed, on concentrations of copper (Cu), iron (Fe), and manganese (Mn) in the tissues of experimental rats infected/uninfected with the tapeworm (Hymenolepis diminuta). Male Wistar rats were divided into three groups (00, P0, and PT); the P0 and PT animals were fed a standard mixture for rats (ST-1) supplemented with the plant A. halleri at a weekly Zn and Cd dosage of 123 and 1 mg, respectively. Moreover, rats from the group PT were infected with the tapeworm. The group 00 served as control animals fed only ST-1 having no tapeworm infection. Rats were euthanized after 6 weeks, and Cu, Fe, and Mn levels were determined in rat and tapeworm tissues. The results indicated that both the consumption of hyperaccumulator plant and/or presence of tapeworms did have significant effect on Cu, Fe, and Mn concentrations in the host tissues. Concentrations of all the elements were higher in the rat liver and partially kidneys than in the tapeworms, and the concentrations of Cu, Fe, and Mn were affected by the consumption of Cd/Zn hyperaccumulator plants. Particularly, Fe concentrations in all rat tissues were significantly increased by consumption of A. halleri while decreased by the presence of tapeworms. Overall, the consumption of a Cd/Zn hyperaccumulator plant and tapeworm infection cause an imbalance in Cu, Fe, and Mn concentrations in the tissues of a consumer (experimental rats).

Keywords

Rat Tapeworm Plant Accumulate Cadmium Zinc Copper Iron Manganese 

Notes

Acknowledgements

The authors gratefully acknowledge Brian Kavalir for his proofreading services.

Funding information

This study was supported by the University-wide internal grant agency of the Czech University of Life Sciences Prague (CIGA), project no. 20152021, and the Grant Agency of Czech Republic (GACR), project no. 13-18154S.

Compliance with ethical standards

All experiments with laboratory animals were conducted in compliance with the current laws of the Czech Republic Act No. 246/1992 coll. on the Protection of Animals Against Cruelty and EC Directive 86/609/EEC.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adel M, Mohammadmoradi K, Ley-Quinonez CP (2017) Trace element concentrations in muscle tissue of milk shark (Rhizoprionodon acutus) from the Persian Gulf. Environ Sci Pollut Res 24(6):5933–5937.  https://doi.org/10.1007/s11356-016-8358-6 CrossRefGoogle Scholar
  2. Barnet K, Emder P, Day AS, Selby WS (2007) Tapeworm infestation: a cause of iron deficiency anemia shown by capsule endoskopy. Gastrointest Endosc 33(3):625–627CrossRefGoogle Scholar
  3. Baruš V, Tenora F, Šumbera R (2003) Relative concentrations of four heavy metals in the parasites Protospirura muricola (Nematoda) and Inermicapsifer arvicanthidis (Cestoda) in their definitive host silvery mole-rat (Heliophobius argenteocinereus: Rodentia). Helminthologia 40(4):227–232Google Scholar
  4. Blum WEH, Horak O, Mentler A, Puschenreiter M (2009) Trace elements. In: Sabljic A (ed) Environmental and ecological chemistry, vol 2. Encyclopedia of life support systems. UNESCO, Paris, pp 156–164Google Scholar
  5. Brožová A, Jankovská I, Miholová D, Schánková S, Trunečková J, Langrová I, Kudrnacová M, Vadlejch J (2015) Heavy metal concentrations in the small intestine of red fox (Vulpex vulpex) with and without Echinococcus multilocularis infection. Environ Sci Pollut Res 22(4):3175–3179.  https://doi.org/10.1007/s11356-014-3733-7 CrossRefGoogle Scholar
  6. Bull PC (1994) Cox DW (1994) Wilson disease and Menkes disease: new handles on heavy metal transport. Trends Genet 10(7):246–252.  https://doi.org/10.1016/0168-9525(94)90172-4 CrossRefGoogle Scholar
  7. Čadková Z, Száková J, Miholová D, Valek P, Pacáková Z, Vadlejch J, Langrová I, Jankovská I (2013) Faecal excretion dynamic during subacute oral exposure to different Pb species in Rattus norvegicus. Biol Trace Elem Res 152(2):225–232.  https://doi.org/10.1007/s12011-013-9609-8 CrossRefGoogle Scholar
  8. Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 13(5):509–519.  https://doi.org/10.1016/j.chom.2013.04.010 CrossRefGoogle Scholar
  9. Chua AC, Morgan EH (1996) Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat. Biol Trace Elem Res 55(1–2):39–54.  https://doi.org/10.1007/BF02784167 CrossRefGoogle Scholar
  10. Cobbina SJ, Chen Y, Zhou Z, Wu X, Feng W, Wang W, Mao G, Xu H, Zhang Z, Wu X, Yang L (2015) Low concentration toxic metal mixture interactions: effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-cronic exposure. Chemosphere 132:79–86.  https://doi.org/10.1016/j.chemosphere.2015.03.013 CrossRefGoogle Scholar
  11. Collins JF, Prohaska JR, Knutson MD (2010) Metabolic crossroads of iron and copper. Nutr Rev 68(3):133–147.  https://doi.org/10.1111/j.1753-4887.2010.00271.x CrossRefGoogle Scholar
  12. Eira C, Torres J, Vingada J, Miquel J (2005) Concentration of some toxic elements in Oryctolagus cuniculus and in its intestinal cestode Mosgovoyia ctenoides, in Dunas de Mira (Portugal). Sci Total Environ 346(1-3):81–86.  https://doi.org/10.1016/j.scitotenv.2004.11.014 CrossRefGoogle Scholar
  13. Freeland-Graves JH, Mousa TY, Sanjeevi N (2014) Nutritional Requirements for Manganese. In Costa LG, Aschner M (ed) Manganese in Health and Disease. Royal Society of Chemistry. Thomas Graham House, Cambridge UK. pp. 34–75  https://doi.org/10.1039/9781782622383
  14. Fox MRS, Tao SH, Stone CL, Fry BE (1984) The effect of zinc, iron, and copper deficiences on cadmium levels in tissues of Japanese quail. Environ Health Perspect 54:57–65.  https://doi.org/10.1289/ehp.845457 CrossRefGoogle Scholar
  15. Heo DH, Baek IJ, Kang HJ, Kim JH, Chang M, Jeong MY, Kim TH, Choi ID, Yun CW (2010) Cadmium regulates copper homeostasis by inhibiting the aktivity of Mac1, a transcriptional aktivator of the copper regulon, in Saccharomyces cerevisiae. Biochem J 431(2):257–265.  https://doi.org/10.1042/BJ20100638 CrossRefGoogle Scholar
  16. Huguet S, Bert V, Laboudigue A, Barthes V, Isaure MP, Llorens I, Schat H, Sarret G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ Exp Botany 82:54–65.  https://doi.org/10.1016/j.envexpbot.2012.03.011 CrossRefGoogle Scholar
  17. Jankovská I, Langrová I, Bejček V, Miholová D, Vadlejch J, Petrtýl M (2008) Heavy metal accumulation in small terrestrial rodents infected by cestodes or nematodes. Parasite 15(4):581–588.  https://doi.org/10.1051/parasite/2008154581 CrossRefGoogle Scholar
  18. Jankovská I, Miholová D, Langrová I, Bejček V, Vadlejch J, Kolihová D, Šulc J (2009) Influence of parasitism on the use of small terrestrial rodents in environmental pollution monitoring. Environ Pollut 157(8-9):2584–2586.  https://doi.org/10.1016/j.envpol.2009.04.008 CrossRefGoogle Scholar
  19. Jankovská I, Vadlejch J, Száková J, Miholová D, Kunc P, Knížková I, Langrová I (2010a) Experimental studies on the lead accumulation in the cestode Moniezia expansa (Cestoda: Anoplocephalidae) and its final host (Ovis aries). Ecotoxicology 19(5):928–932.  https://doi.org/10.1007/s10646-010-0474-3 CrossRefGoogle Scholar
  20. Jankovská I, Vadlejch J, Száková J, Miholová D, Kunc P, Knížková I, Čadková Z, Langrová I (2010b) Experimental studies on the cadmium accumulation in the cestode Moniezia expansa (Cestoda: Anoplocephalidae) and its final host (Ovis aries). Exp Parasitol 126(2):130–134.  https://doi.org/10.1016/j.exppara.2010.04.010 CrossRefGoogle Scholar
  21. Jankovská I, Miholová D, Langrová I, Bejček V, Vadlejch J, Šulc M (2010c) Influence of parasitism on trace element contents in tissues of red fox (Vulpes vulpes) and its parasites Mesocestoides spp. (Cestoda) and Toxascaris leonina (Nematoda). Arch Environ Contam Toxicol 58(2):469–477.  https://doi.org/10.1007/s00244-009-9355-2 CrossRefGoogle Scholar
  22. Jankovská I, Miholová D, Romočuský S, Petrtýl M, Langrová I, Kalous L, Sloup V, Válek P, Vadlejch J, Lukešová D (2014) Importance of fish gender as a factor in environmental monitoring of mercury. Environ Sci Pollut Res 21(9):6239–6242.  https://doi.org/10.1007/s11356-013-2459-2 CrossRefGoogle Scholar
  23. Jankovská I, Sloup V, Száková J, Langrová I, Sloup S (2016) How the tapeworm Hymenolepis diminuta affects zinc and cadmium accumulation in a host fed a hyperaccumulating plant (Arabidopsis halleri). Environ Sci Pollut Res 23(19):19126–19133.  https://doi.org/10.1007/s11356-016-7123-1 CrossRefGoogle Scholar
  24. Kosik-Bogacka DI, Baranowska-Bosiacka I, Salamatin R (2010) Hymenolepis diminuta: effect of infection on ion transport in colon and blood picture of rats. Exp Parasitol 124(3):285–294.  https://doi.org/10.1016/j.exppara.2009.10.014 CrossRefGoogle Scholar
  25. Lafferty KD (1997) Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitol Today 13(7):251–255.  https://doi.org/10.1016/S0169-4758(97)01072-7 CrossRefGoogle Scholar
  26. Lebedová J, Bláhová L, Večeřa Z, Mikuška P, Dočekal B, Buchtová M, Míšek I, Dumková J, Hampl A, Hilscherová K (2016) Impact of acute and chronic inhalation exposure to CdO nanoparticles on mice. Environ Sci Pollut Res 23(23):24047–24060.  https://doi.org/10.1007/s11356-016-7600-6 CrossRefGoogle Scholar
  27. Leitenmaier B, Witt A, Witzke A, Stemke A, Meyer-Klaucke W, Kroneck PMH, Kupper H (2011) Biochemical and biophysical characterisation yields insights into the mechanism of a Cd/Zn transporting ATPase purified from the hyperacumulator plant Thlaspi caerulescens. Biochim Biophys Acta 1808(10):2591–2599.  https://doi.org/10.1016/j.bbamem.2011.05.010 CrossRefGoogle Scholar
  28. Mercandante CJ, Herrera C, Pettiglio MA, Foster ML, Johnson LC, Dorman DC, Bartnikas TB (2016) The effect of high dose oral manganese exposure on copper, iron and zinc levels in rats. Biometals 29(3):417–422.  https://doi.org/10.1007/s10534-016-9924-6 CrossRefGoogle Scholar
  29. Navarrete-Perea J, Toledano-Magana Y, De la Torre P, Sciutto E, Bobes RJ, Soberon X, Laclette JP (2016) Role porcine serum haptoglobin in the host-parasite relationship of Taenia solium cysticercosis. Mol Biochem Parasitol 207(2):61–67.  https://doi.org/10.1016/j.molbiopara.2016.05.010 CrossRefGoogle Scholar
  30. Phipps DA (1981) Chemistry and biochemistry of trace metals in biological systems. In: Lepp NW (ed) Effect of heavy metal pollution on plants. Pollution monitoring series. Springer, Dordrecht.  https://doi.org/10.1007/978-94-011-7339-1_ Google Scholar
  31. Reeves PG, Chaney RL (2001) Mineralstatus of female rats affects the absorption and organ distribution of dietary cadmium derived from edible sunflower kernels (Helianthus annuus L.) Environ Res 85:215–225.  https://doi.org/10.1006/enrs.2000.4236 CrossRefGoogle Scholar
  32. Reeves PG, Chaney RL (2004) Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets. Environ Res 96:311–322.  https://doi.org/10.1016/j.envres.2004.02.013 CrossRefGoogle Scholar
  33. Reeves PG, Chaney RL (2008) Bioavailability as an issue in risk assessment and management of food cadmium: a review. Sci Total Environ 398:13–19CrossRefGoogle Scholar
  34. Sarret G, Willems G, Isaure MP, Marcus MA, Fakra SC, Frérot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P (2009) Zinc distribution and speciation in Arabidopsis halleri × Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytol 184(3):581–595.  https://doi.org/10.1111/j.1469-8137.2009.02996.x CrossRefGoogle Scholar
  35. Sharma S, Sharma KP, Sharma S (2016) Role of Spirulina in mitigating hemato-toxicity in Swiss albino mice exposed to aluminium and aluminium fluoride. Environ Sci Pollut Res 23(24):25280–25287.  https://doi.org/10.1007/s11356-016-7718-6 CrossRefGoogle Scholar
  36. Sinicropi MS, Amantea D, Caruso A, Saturnino C (2010) Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning. Arch Toxicol 84(7):501–520.  https://doi.org/10.1007/s00204-010-0544-6 CrossRefGoogle Scholar
  37. Sures B (2001) The use of fish parasites as bioindicators of heavy metals in aquatic ecosystems: a review. Aquat Ecol 35(2):245–255.  https://doi.org/10.1023/A:1011422310314 CrossRefGoogle Scholar
  38. Sures B (2003) Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective. Parasitology 126:S53–S60CrossRefGoogle Scholar
  39. Sures B, Siddall R (2001) Comparison between lead accumulation of Pomphorhynchus laevis (Palaeacanthocephala) in the intestine of chub (Leuciscus cephalus) and in the body cavity of goldfish (Carassius auratus auratus). Int J Parasitol 31(7):669–673.  https://doi.org/10.1016/S0020-7519(01)00173-4 CrossRefGoogle Scholar
  40. Sures B, Jürges G, Taraschewski H (1998) Relative concentrations of heavy metals in the parasites Ascaris suum (Nematoda) and Fasciola hepatica (Digenea) and their respective porcine and bovine definitive hosts. Int J Parasitol 28(8):1173–1178.  https://doi.org/10.1016/S0020-7519(98)00105-2 CrossRefGoogle Scholar
  41. Sures B, Franken M, Taraschewski H (2000a) Element concentrations in the archiacanthocephalan Macracanthorhynchus hirudinaceus compared with those in the porcine definitive host from a slaughterhouse in La Paz, Bolivia. Int J Parasitol 30:1071–1076.  https://doi.org/10.1016/S0020-7519(00)00094-1, 10 CrossRefGoogle Scholar
  42. Sures B, Jürges G, Taraschewski H (2000b) Accumulation and distribution of lead in the archiacanthocephalan Moniliformis moniliformis from experimentally infected rats. Parasitology 121(4):427–433.  https://doi.org/10.1017/S003118209900654X CrossRefGoogle Scholar
  43. Sures B, Grube K, Taraschewski H (2002) Experimental studies on the lead accumulation in the cestode Hymenolepis diminuta and its final host, Rattus norvegicus. Ecotoxicology 11(5):365–368.  https://doi.org/10.1023/A:1020561406624 CrossRefGoogle Scholar
  44. Thielen F, Zimmermann S, Baska F, Taraschewski H, Sures B (2004) The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary. Environ Pollut 129(3):421–429.  https://doi.org/10.1016/j.envpol.2003.11.011 CrossRefGoogle Scholar
  45. Torres J, de Lapuente J, Eira C, Nadal J (2004) Cadmium and lead concentrations in Gallegoides arfaai (Cestoda: Anoplocephalidae) and Apodemus sylvaticus (Rodentia: Muridae) from Spain. Parasitol Res 94(6):468–470.  https://doi.org/10.1007/s00436-004-1232-3 CrossRefGoogle Scholar
  46. Torres J, Peig J, Eira C, Borrás M (2006) Cadmium and lead concentrations in Skrjabinotaenia lobata (Cestoda: Catenotaeniidae) and in its host, Apodemus sylvaticus (Rodentia: Muridae) in the urban dumping site of Garraf (Spain). Environ Pollut 143(1):4–8.  https://doi.org/10.1016/j.envpol.2005.11.012 CrossRefGoogle Scholar
  47. Válek P, Sloup V, Jankovská I, Langrová I, Száková J, Miholová J, Horáková B, Křivská D (2015) Can the hyperaccumulating plant Arabidopsis halleri in feed influence a given consumer organism (Rattus norvegicus var. alba)? Bull Environ Contam Toxicol 95(1):116–121.  https://doi.org/10.1007/s00128-015-1555-z CrossRefGoogle Scholar
  48. Whittaker MH, Wang G, Chen X, Lipsky M, Smith D, Gwiazda R, Fowler BA (2011) Exposure to Pb, Cd, and As mixtures potentiates the production of oxidative stress precursors: 30-day, 90-day, and 180-day drinking waterstudies in rats. Toxicol Appl Pharm 254(2):154–166.  https://doi.org/10.1016/j.taap.2010.10.025 CrossRefGoogle Scholar
  49. Zhenli LH, Yanga XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology 19:125–140.  https://doi.org/10.1016/j.jtemb.2005.02.010

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Ivana Jankovská
    • 1
    Email author
  • Vladislav Sloup
    • 1
  • Jiřina Száková
    • 2
  • Jan Magdálek
    • 1
  • Stanislava Nechybová
    • 1
  • Pavla Peřinková
    • 1
  • Iva Langrová
    • 1
  1. 1.Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life SciencesSuchdolCzech Republic
  2. 2.Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life SciencesSuchdolCzech Republic

Personalised recommendations