Skip to main content

Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye

Abstract

Water pollution caused by the discharge of hazardous textile effluents is a serious environmental problem worldwide. In order to assess the pollution level of the textile effluents, various physico-chemical parameters were analyzed in the textile wastewater and agricultural soil irrigated with the wastewater (contaminated soil) using atomic absorption spectrophotometer and gas chromatography-mass spectrometry (GC-MS) analysis that demonstrated the presence of several toxic heavy metals (Ni, Cu, Cr, Pb, Cd, and Zn) and a large number of organic compounds. Further, in order to get a comprehensive idea about the toxicity exerted by the textile effluent, mung bean seed germination test was performed that indicated the reduction in percent seed germination and radicle-plumule growth. The culturable microbial populations were also enumerated and found to be significantly lower in the wastewater and contaminated soil than the ground water irrigated soil, thus indicating the biotic homogenization of indigenous microflora. Therefore, the study was aimed to develop a cost effective and ecofriendly method of textile waste treatment using native soil bacterium, identified as Arthrobacter soli BS5 by 16S rDNA sequencing that showed remarkable ability to degrade a textile dye reactive black 5 with maximum degradation of 98% at 37 °C and pH in the range of 5–9 after 120 h of incubation.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Ahmad K, Ejaz A, Azam M, Khan ZI, Ashraf M, Al-Qurainy F, Fardous A, Gondal S, Bayat AR, Valeem EE (2011) Lead, cadmium and chromium contents of canola irrigated with sewage water. Pak J Bot 43(2):1403–1410

    CAS  Google Scholar 

  • Akhtar MF, Ashraf M, Anjum AA, Javeed A, Sharif A, Saleem A, Akhtar B (2016) Textile industrial effluent induces mutagenicity and oxidative DNA damage and exploits oxidative stress biomarkers in rats. Environ Toxicol Pharmacol 41:180–186. https://doi.org/10.1016/j.etap.2015.11.022

    CAS  Article  Google Scholar 

  • Aleem A, Malik A (2003) Genotoxic hazards of long-term application of wastewater on agricultural soil. Mutat Res Gen Tox En 538(1):145–154. https://doi.org/10.1016/S1383-5718(03)00110-4

    CAS  Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    CAS  Article  Google Scholar 

  • Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol 98(16):3149–3153. https://doi.org/10.1016/j.biortech.2006.10.008

    CAS  Article  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Pollution Control Federation, and Water Environment Federation. 21st ed. APHA. Washington DC

  • Asad S, Amoozegar MA, Pourbabaee A, Sarbolouki MN, Dastgheib SM (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98(11):2082–2088. https://doi.org/10.1016/j.biortech.2006.08.020

    CAS  Article  Google Scholar 

  • Atashgahi S, Aydin R, Dimitrov MR, Sipkema D, Hamonts K, Lahti L, Maphosa F, Kruse T, Saccenti E, Springael D, Dejonghe W (2015) Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. Sci Rep 5:17284

    CAS  Article  Google Scholar 

  • Bååth E, Diaz-Ravina M, Bakken LR (2005) Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol 50(4):496–505. https://doi.org/10.1007/s00248-005-0008-3

    Article  Google Scholar 

  • Bagewadi ZK, Vernekar AG, Patil AY, Limaye AA, Jain VM (2011) Biodegradation of industrially important textile dyes by actinomycetes isolated from activated sludge. Biotechnol Bioinformatics Bioeng 1:351–360

    Google Scholar 

  • Bilińska L, Gmurek M, Ledakowicz S (2016) Comparison between industrial and simulated textile wastewater treatment by AOPs-biodegradability, toxicity and cost assessment. Chem Eng J 306:550–559. https://doi.org/10.1016/j.cej.2016.07.100

    Article  Google Scholar 

  • Drury B, Rosi-Marshall E, Kelly JJ (2013) Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl Environ Microbiol 79(6):1897–1905. https://doi.org/10.1128/AEM.03527-12

    CAS  Article  Google Scholar 

  • Du LN, Li G, Zhao YH, HK X, Wang Y, Zhou Y, Wang L (2015) Efficient metabolism of the azo dye methyl orange by Aeromonas sp. strain DH-6: characteristics and partial mechanism. Int Biodeterior Biodegrad 105:66–72

    CAS  Article  Google Scholar 

  • El Bouraie M, El Din WS (2016) Biodegradation of reactive black 5 by Aeromonas hydrophila strain isolated from dye-contaminated textile wastewater. Sustain Environ Res 26(5):209–216. https://doi.org/10.1016/j.serj.2016.04.014

    Article  Google Scholar 

  • Ghanem KM, Al-Fassi FA, Biag AK (2012) Optimization of methyl orange decolorization by mono and mixed bacterial culture techniques using statistical designs. Afr J Microbiol Res 6(2):436–446

    CAS  Google Scholar 

  • Ghodake G, Jadhav U, Tamboli D, Kagalkar A, Govindwar S (2011) Decolorization of textile dyes and degradation of mono-azo dye amaranth by Acinetobacter calcoaceticus NCIM 2890. Indian J Microbiol 51(4):501–508. https://doi.org/10.1007/s12088-011-0131-4

    CAS  Article  Google Scholar 

  • Gupta PK (2004) Methods in environmental analysis: water, soil and air. Upadesh Purohit, Agrobios, India

    Google Scholar 

  • Gupta P, Asthana M, Kumar A, Barun S (2014) Physicochemical analysis and microbial diversity of Yamuna water and industrial effluents. Int J Appl Sci Biotechnol 2(2):199–205

    CAS  Article  Google Scholar 

  • Haworth S, Lawlor T, Mortelmans K, Speck W, Zeiger E (1983) Salmonella mutagenicity test results for 250 chemicals. Environ Mol Mutagen 5(S1):3–49. https://doi.org/10.1002/em.2860050703

    CAS  Article  Google Scholar 

  • Hsueh CC, Chen BY (2007) Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. J Hazard Mater 141(3):842–849. https://doi.org/10.1016/j.jhazmat.2006.07.056

    CAS  Article  Google Scholar 

  • Hu TL (1998) Degradation of azo dye RP2B by Pseudomonas luteola. Water Sci Technol 38(4–5):299–306

    CAS  Google Scholar 

  • Jadhav JP, Kalyani DC, Telke AA, Phugare SS, Govindwar SP (2010) Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresour Technol 101(1):165–173. https://doi.org/10.1016/j.biortech.2009.08.027

    CAS  Article  Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    CAS  Google Scholar 

  • Jasińska A, Paraszkiewicz K, Sip A, Długoński J (2015) Malachite green decolorization by the filamentous fungus Myrothecium roridum-mechanistic study and process optimization. Bioresour Technol 194:43–48. https://doi.org/10.1016/j.biortech.2015.07.008

    Article  Google Scholar 

  • Joshi SM, Inamdar SA, Telke AA, Tamboli DP, Govindwar SP (2010) Exploring the potential of natural bacterial consortium to degrade mixture of dyes and textile effluent. Int Biodeterior Biodegrad 64(7):622–628. https://doi.org/10.1016/j.ibiod.2010.07.001

    CAS  Article  Google Scholar 

  • Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99(11):4635–4641. https://doi.org/10.1016/j.biortech.2007.06.058

    CAS  Article  Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of reactive red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163(2):735–742. https://doi.org/10.1016/j.jhazmat.2008.07.020

    CAS  Article  Google Scholar 

  • Kannan A, Upreti RK (2008) Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds. J Hazard Mater 153(1):609–615. https://doi.org/10.1016/j.jhazmat.2007.09.004

    CAS  Article  Google Scholar 

  • Kapanen A, Itavaara M (2001) Ecotoxicity tests for compost applications. Ecotoxicol Environ Saf 49(1):1–16. https://doi.org/10.1006/eesa.2000.1927

    CAS  Article  Google Scholar 

  • Karataş M, Dursun S (2007) Bio-decolourization of azo-dye under anaerobic batch conditions. J Int Environ Appl Sci 2(1&2):20–25

    Google Scholar 

  • Kaur S, Mehra P (2012) Assessment of heavy metals in summer & winter seasons in river Yamuna segment flowing through Delhi, India. J Environ Econ 3(1):149–165

    Google Scholar 

  • Kaur A, Vats S, Rekhi S, Bhardwaj A, Goel J, Tanwar RS, Gaur KK (2010) Physico-chemical analysis of the industrial effluents and their impact on the soil microflora. Procedia Environ Sci 2:595–599. https://doi.org/10.1016/j.proenv.2010.10.065

    Article  Google Scholar 

  • Khalid A, Batool S, Siddique MT, Nazli ZH, Bibi R, Mahmood S, Arshad M (2011) Decolorization of Remazol black-B azo dye in soil by fungi. Soil Environ 30(1):1–6

    CAS  Google Scholar 

  • Khan S, Malik A (2016) Degradation of reactive black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Can J Microbiol 262(3):220–232

    Article  Google Scholar 

  • Knize MG, Takemoto BT, Lewis PR, Felton JS (1987) The characterization of the mutagenic activity of soil. Mutat Res Lett 192(1):23–30. https://doi.org/10.1016/0165-7992(87)90121-7

    CAS  Article  Google Scholar 

  • Kolekar YM, Powar SP, Gawai KR, Lokhande PD, Shouche YS, Kodam KM (2008) Decolorization and degradation of Disperse Blue 79 and Acid Orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil. Bioresour Technol 99(18):8999–9003. https://doi.org/10.1016/j.biortech.2008.04.073

    CAS  Article  Google Scholar 

  • Lenntech Water Treatment and Air Purification (2004) Water Treatment, Published by Lenntech, Rotterdamseweg, Netherlands. (www.excelwater.com/thp/filters/ Water-Purification.htm)

  • Li HX, Xu B, Tang L, Zhang JH, Mao ZG (2015) Reductive decolorization of indigo carmine dye with Bacillus sp. MZS10. Int Biodeterior Biodegrad 103:30–37. https://doi.org/10.1016/j.ibiod.2015.04.007

    CAS  Article  Google Scholar 

  • Lotito AM, De Sanctis M, Di Iaconi C, Bergna G (2014) Textile wastewater treatment: aerobic granular sludge vs activated sludge systems. Water Res 54:337–346. https://doi.org/10.1016/j.watres.2014.01.055

    CAS  Article  Google Scholar 

  • Lu XM, Lu PZ (2014) Characterization of bacterial communities in sediments receiving various wastewater effluents with high-throughput sequencing analysis. Microb Ecol 67(3):612–623

    CAS  Article  Google Scholar 

  • Mahmood S, Arshad M, Khalid A, Nazli ZH, Mahmood T (2011) Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater. Soil Environ 30(1):7–12

    CAS  Google Scholar 

  • Mahmoud MS (2016) Decolorization of certain reactive dye from aqueous solution using Baker’s yeast (Saccharomyces cerevisiae) strain. HBRC J 12(1):88–98. https://doi.org/10.1016/j.hbrcj.2014.07.005

    Article  Google Scholar 

  • Markowicz A, Płociniczak T, Piotrowska-Seget Z (2010) Response of bacteria to heavy metals measured as changes in FAME profiles. Pol J Environ Stud 19(5):957–965

    CAS  Google Scholar 

  • Meigs JW, Marret LD, Ulrich FU, Flannery JT (1986) Bladder tumor incidence among workers exposed to benzidine: a 30-year follow-up. J Natl Cancer Inst 76(1):1–8

    CAS  Google Scholar 

  • Moosvi S, Keharia H, Madamwar D (2005) Decolourization of textile dye reactive violet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microbiol Biotechnol 21(5):667–672. https://doi.org/10.1007/s11274-004-3612-3

    CAS  Article  Google Scholar 

  • Nirmalarani J, Janardhanan K (1988) Effect of South India viscose factory effluent on seed germination seedling growth and chloroplast pigments content in five varieties of maize (Zea mays I). Madras Agric J 75:41

    Google Scholar 

  • Nosheen S, Rakhshanda N, Muhammad A, Amer J (2010) Accelerated biodecolorization of reactive dyes with added nitrogen and carbon sources. Int J Agric Biol 12(3):426–430

    CAS  Google Scholar 

  • Oberly TJ, Bewsey BJ, Probst GS (1984) An evaluation of the L5178YTA+\- mouse lymphoma forward mutation assay using 42 chemicals. Mutat Res 125(2):291–306. https://doi.org/10.1016/0027-5107(84)90079-4

    CAS  Article  Google Scholar 

  • Omar HH (2008) Algal decolorization and degradation of monoazoand diazo dyes. Pak J Biol Sci 11(10):1310–1316. https://doi.org/10.3923/pjbs.2008.1310.1316

    CAS  Article  Google Scholar 

  • Panda UC, Sundaray SK, Rath P, Nayak BB, Bhatta D (2006) Application of factor and cluster analysis for characterization of river and estuarine water system-a case study: Mahanadi River (India). J Hydrol 331(3):434–445. https://doi.org/10.1016/j.jhydrol.2006.05.029

    CAS  Article  Google Scholar 

  • Paul SA, Chavan SK, Khambe SD (2012) Studies on characterization of textile industrial waste water in Solapur city. Int J Chem Sci 10(2):635–642

    CAS  Google Scholar 

  • Prabha S, Gogoi A, Mazumder P, Ramanathan AL, Kumar M (2016) Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu. Appl Water Sci:1–11

  • Prokof'eva OG (1971) Induction of hepatic tumors in mice by benzidine. Vopr Onkol 17(5):61–64

    Google Scholar 

  • Qin JJ, Htun M, Kekre KA (2007) Nanofiltration for recovering wastewater from a specific dyeing facility. Sep Purif Technol 56(2):199–203. https://doi.org/10.1016/j.seppur.2007.02.002

    CAS  Article  Google Scholar 

  • Ray PD, Yosim A, Fry RC (2014) Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front Genet 5:201. https://doi.org/10.3389/fgene.2014.00201

    Article  Google Scholar 

  • Sangeetha J, Thangadurai D (2014) Effect of biologically treated petroleum sludge on seed germination and seedling growth of Vigna unguiculata (L.) Walp. (Fabaceae). Braz Arch Biol Technol 57(3):427–433. https://doi.org/10.1590/S1516-89132014005000011

    CAS  Article  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157. https://doi.org/10.1016/j.jtice.2010.06.006

    CAS  Article  Google Scholar 

  • Saxena RM, Kewal PF, Yadav RS, Bhatnagar AK (1986) Impact of tannery effluents on some pulse crops. Ind J Environ Health 28(4):345–348

    Google Scholar 

  • Seesuriyachan P, Kuntiya A, Sasaki K, Techapun C (2009) Comparative study on methyl orange removal by growing cells and washed cell suspensions of Lactobacillus casei TISTR 1500. World J Microbiol Biotechnol 25(6):973–979. https://doi.org/10.1007/s11274-009-9974-9

    Article  Google Scholar 

  • Shah MP, Patel KA, Nair SS, Darji AM (2013) Microbial degradation and decolourisation of reactive black by an application of Pseudomonas stutzeri ETL-79. OA. Biotechnology 2(2):13

    Google Scholar 

  • Sharma N, Saxena S, Fatima M, Iram B, Datta A, Gupta S (2014) Microcosm analysis of untreated textile effluent for cod reduction by autochthonous bacteria. Int J Curr Res Chem Pharma Sci 1(5):15–23

    Google Scholar 

  • Singh RP, Singh PK, Singh RL (2014) Bacterial decolorization of textile azo dye acid orange by Staphylococcus hominis RMLRT03. Toxicol Int 21(2):160–166. https://doi.org/10.4103/0971-6580.139797

    CAS  Article  Google Scholar 

  • Spagni A, Casu S, Grilli S (2012) Decolourisation of textile wastewater in a submerged anaerobic membrane bioreactor. Bioresour Technol 117:180–185. https://doi.org/10.1016/j.biortech.2012.04.074

    CAS  Article  Google Scholar 

  • Subrahmanyam G, Shen JP, Liu YR, Archana G, He JZ (2014) Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India. Environ Monit Assess 186(7):4037–4050. https://doi.org/10.1007/s10661-014-3678-9

    CAS  Article  Google Scholar 

  • Thakur JK, Paul S, Dureja P, Annapurna K, Padaria JC, Gopal M (2014) Degradation of sulphonated azo dye red HE7B by Bacillus sp. and elucidation of degradative pathways. Curr Microbiol 69(2):183–191. https://doi.org/10.1007/s00284-014-0571-2

    CAS  Article  Google Scholar 

  • Tonogai Y, Ogawa S, Ito Y, Iwaida M (1982) Actual survey on TLm (median tolerance limit) values of environmental pollutants, especially on amines, nitriles, aromatic nitrogen compounds and artificial dyes. J Toxicol Sci 7(3):193–203. https://doi.org/10.2131/jts.7.193

    CAS  Article  Google Scholar 

  • US EPA (1985) Health and Environmental Effects Profile for Azobenzene. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • US EPA (1999) Announcement of Stakeholders Meeting on the Drinking Water Contaminant Identification and Selection Process, and the 6-Year Review of All Existing National Primary Drinking Water Regulations, as Required by the Safe Drinking Water Act, as Amended in 1996; Notice of Stakeholders Meeting. Fed Regist 64(198):55711

  • Vijayalakshmidevi SR, Muthukumar K (2015) Improved biodegradation of textile dye effluent by coculture. Ecotoxicol Environ Saf 114:23–30. https://doi.org/10.1016/j.ecoenv.2014.09.039

    CAS  Article  Google Scholar 

  • Wang W (1990) Toxicity assessment of pretreated industrial wastewaters using higher plants. Res J Water Pollut Control Fed 62:853–860

    Google Scholar 

  • Wang H, Zheng XW, JQ S, Tian Y, Xiong XJ, Zheng TL (2009) Biological decolorization of the reactive dyes reactive black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. J Hazard Mater 171(1):654–659. https://doi.org/10.1016/j.jhazmat.2009.06.050

    CAS  Article  Google Scholar 

  • Wang ZW, Liang JS, Liang Y (2013) Decolorization of reactive black 5 by a newly isolated bacterium Bacillus sp. YZU1. Int Biodeterior Biodegrad 76:41–48. https://doi.org/10.1016/j.ibiod.2012.06.023

    CAS  Article  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    CAS  Article  Google Scholar 

  • Wins JA, Murugan M (2010) Effect of textile mill effluent on growth and germination of black gram-Vigna mungo (L.) Hepper. Int. J Pharm Bio Sci 1(1):1–7

    Google Scholar 

  • Yasmin A, Nawaz SO, Ali SM (2011) Impact of industrial effluents on germination and seedling growth of Lens Esculentum varieties. Pak J Bot 43(6):2759–2763

    Google Scholar 

  • Zuberer DA (1994) Recovery and enumeration of viable bacteria. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis: part 2-microbiological and biochemical properties (Methods of Soil An 2) (pp. 119–144). Soil Science Society of America, Inc.

Download references

Acknowledgements

SK is thankful to the University Grants Commission (UGC), New Delhi, India, for financial assistance under the Maulana Azad National Fellowship (MANF) scheme. Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Bombay, India, is acknowledged for the GC-MS analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Malik.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 46460 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Malik, A. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ Sci Pollut Res 25, 4446–4458 (2018). https://doi.org/10.1007/s11356-017-0783-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0783-7

Keywords

  • Degradation
  • Effluents
  • Heavy metals
  • Pollution
  • Textile industry
  • Toxicity