Skip to main content
Log in

Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nano-silicon (Si) may be more effective than regular fertilizers in protecting plants from cadmium (Cd) stress. A field experiment was conducted to study the effects of nano-Si on Cd accumulation in grains and other organs of rice plants (Oryza sativa L. cv. Xiangzaoxian 45) grown in Cd-contaminated farmland. Foliar application with 5~25 mM nano-Si at anthesis stage reduced Cd concentrations in grains and rachises at maturity stage by 31.6~64.9 and 36.1~60.8%, respectively. Meanwhile, nano-Si application significantly increased concentrations of potassium (K), magnesium (Mg), and iron (Fe) in grains and rachises, but imposed little effect on concentrations of calcium (Ca), zinc (Zn), and manganese (Mn) in them. Uppermost nodes under panicles displayed much higher Cd concentration (4.50~5.53 mg kg−1) than other aerial organs. After foliar application with nano-Si, translocation factors (TFs) of Cd ions from the uppermost nodes to rachises significantly declined, but TFs of K, Mg, and Fe from the uppermost nodes to rachises increased significantly. High dose of nano-Si (25 mM) was more effective than low dose of nano-Si in reducing TFs of Cd from roots to the uppermost nodes and from the uppermost nodes to rachises. These findings indicate that nano-Si supply reduces Cd accumulation in grains by inhibiting translocation of Cd and, meanwhile, promoting translocation of K, Mg, and Fe from the uppermost nodes to rachises in rice plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrees M, Ali S, Rizwan M, Zia-Ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  Google Scholar 

  • ATSDR (2011) 2011 priority list of hazardous substances that will be the subject of toxicological profiles (detailed data table). Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Bahrani A, Joo MH (2010) Flag leaf role in N accumulation and remobilization as affected by nitrogen in a bread and durum wheat cultivars. Am J Agric Environ 8:728–735

    Google Scholar 

  • Cao F, Wang R, Cheng W, Zeng F, Ahmed IM, Hu X, Zhang G, Wu F (2014) Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation. Sci Total Environ 496:275–281

    Article  CAS  Google Scholar 

  • da Cunha KPV, do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197:323–330

    Article  Google Scholar 

  • Dehghanipoodeh S, Ghobadi C, Baninasab B, Gheysari M, Bidabadi SS (2016) Effects of potassium silicate and nanosilica on quantitative and qualitative characteristics of a commercial strawberry (fragaria × ananassa cv.‘camarosa’). J Plant Nutr 39:502–507. https://doi.org/10.1080/01904167.2015. 1086789

    Article  CAS  Google Scholar 

  • Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM (2017) Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym 165:394–401

    Article  CAS  Google Scholar 

  • Farooq MA, Detterbeck A, Clemens S, Dietz K-J (2016) Silicon-induced reversibility of cadmium toxicity in rice. J Exp Bot 67:3573–3585

    Article  CAS  Google Scholar 

  • Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S (2010) Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152:1796–1806

    Article  CAS  Google Scholar 

  • Goix S, Lévêque T, Xiong TT, Schreck E, Baeza-Squiban A, Geret F, Uzu G, Austruy A, Dumat C (2014) Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environ Res 133:185–194

    Article  CAS  Google Scholar 

  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123:459–466

    Article  CAS  Google Scholar 

  • Kato M, Ishikawa S, Inagaki K, Chiba K, Hayashi H, Yanagisawa S, Yoneyama T (2010) Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.) Soil Sci Plant Nutr 56:839–847

    Article  CAS  Google Scholar 

  • Kobayashi NI, Tanoi K, Hirose A, Nakanishi TM (2013) Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging. J Exp Bot 64:507–517

    Article  CAS  Google Scholar 

  • Leveque T, Capowiez Y, Schreck E, Xiong T, Foucault Y, Dumat C (2014) Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils. Environ Pollut 191:199–206

    Article  CAS  Google Scholar 

  • Li S, Zhang S, Ding X, Liao X, Wang R (2013) Spraying silicon and/or cerium sols favorably mediated enhancement of Cd/Pb tolerance in lettuce grown in combined Cd/Pb contaminated soil. Prog Environ Sci 18:68–77

    Article  CAS  Google Scholar 

  • Liu C, Li F, Luo C, Liu X, Wang S, Liu T, Li X (2009) Foliar application of two silica sols reduced cadmium accumulation in rice grains. J Hazard Mater 161:1466–1472

    Article  CAS  Google Scholar 

  • Liu J, Zhang H, Zhang Y, Chai T (2013) Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress. Plant Physiol Biochem 68:1–7

    Article  CAS  Google Scholar 

  • Liu Y, Zhang C, Zhao Y, Sun S, Liu Z (2017) Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grown in cadmium contaminated soil. Sci Total Environ 579:1282–1288

    Article  CAS  Google Scholar 

  • Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115:87–92

    Article  CAS  Google Scholar 

  • Ma J, Cai H, He C, Zhang W, Wang L (2015) A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol 206:1063–1074

    Article  CAS  Google Scholar 

  • Ma J, Zhang X, Wang L (2017) Synergistic effects between [Si-hemicellulose matrix] ligands and Zn ions in inhibiting Cd ion uptake in rice (Oryza sativa) cells. Planta 245:965–976. https://doi.org/10.1007/s00425-017-2655-2

    Article  CAS  Google Scholar 

  • Mae T (1997) Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant Soil 196:201–210

    Article  CAS  Google Scholar 

  • Maghsoudi K, Emam Y, Pessarakli M (2016) Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J Plant Nutr 39:1001–1015. https://doi.org/10.1080/01904167.2015. 1109108

    Article  CAS  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  • Pinto E, Ferreira IM (2015) Cation transporters/channels in plants: tools for nutrient biofortification. J Plant Physiol 179:64–82

    Article  CAS  Google Scholar 

  • Rogalla H, Romheld V (2002) Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ 25:549–555

    Article  CAS  Google Scholar 

  • Sarwar N, Saifullah MSS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937

    CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  Google Scholar 

  • Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60

    Article  CAS  Google Scholar 

  • Shi GL, Zhu S, Bai SN, Xia Y, Lou LQ, Cai QS (2015) The transportation and accumulation of arsenic, cadmium, and phosphorus in 12 wheat cultivars and their relationships with each other. J Hazard Mater 299:94–102

    Article  CAS  Google Scholar 

  • Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H (2007) Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.) Soil Sci Plant Nutr 53:72–77

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Rice seedlings under cadmium stress: effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chem Ecol 28:281–291

    Article  CAS  Google Scholar 

  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688

    Article  CAS  Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci U S A 108:20959–20964

    Article  CAS  Google Scholar 

  • Uzu G, Sauvain J-J, Baeza-Squiban A, Riediker M, Hohl MSS, Val S, Tack K, Denys S, Pradere P, Dumat C (2011) In vitro assessment of the pulmonary toxicity and gastric availability of lead-rich particles from a lead recycling plant. Environ Sci Technol 45:7888–7895

    Article  CAS  Google Scholar 

  • Wang S, Wang F, Gao S (2015) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci. Pollut Res 22:2837–2845. https://doi.org/10.1007/s11356-014-3525-0

    Article  CAS  Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107

    Article  CAS  Google Scholar 

  • Yamaji N, Ma J (2009) A transporter at the node responsible for intervascular transfer of silicon in rice (W). Plant Cell 21:2878–2883

  • Zhang C, Peng S, Laza RC (2003) Senescence of top three leaves in field-grown rice plants. J Plant Nutr 26:2453–2468

    Article  CAS  Google Scholar 

  • Zhao B, Wang P, Zhang H, Zhu Q, Yang J (2006) Source-sink and grain-filling characteristics of two-line hybrid rice Yangliangyou 6. Rice Sci 13:34–42

    Google Scholar 

Download references

Funding

This work has been financed by the Funds for Science and Technology Innovation Project from the Chinese Academy of Agricultural Sciences (grant no. CAAS-XTCX2016018). We are grateful to Dr. Li Mu for providing help in using ICP-MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqi Liu.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Table S1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Zhang, C., Zhao, Y. et al. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environ Sci Pollut Res 25, 2361–2368 (2018). https://doi.org/10.1007/s11356-017-0681-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0681-z

Keywords

Navigation