Environmental Science and Pollution Research

, Volume 25, Issue 3, pp 2538–2551 | Cite as

Reactivation and reuse of TiO2-SnS2 composite catalyst for solar-driven water treatment

  • Marin Kovacic
  • Nina Kopcic
  • Hrvoje KusicEmail author
  • Urska Lavrencic Stangar
  • Dionysios D. Dionysiou
  • Ana Loncaric BozicEmail author
Research Article


One of the most important features of photocatalytic materials intended to be used for water treatment is their long-term stability. The study is focused on the application of thermal and chemical treatments for the reactivation of TiO2-SnS2 composite photocatalyst, prepared by hydrothermal synthesis and immobilized on the glass support using titania/silica binder. Such a catalytic system was applied in solar-driven treatment, solar/TiO2-SnS2/H2O2, for the purification of water contaminated with diclofenac (DCF). The effectiveness of studied reactivation methods for retaining TiO2-SnS2 activity in consecutive cycles was evaluated on basis of DCF removal and conversion, and TOC removal and mineralization of organic content. Besides these water quality parameters, biodegradability changes in DCF aqueous solution treated by solar/TiO2-SnS2/H2O2 process using simply reused (air-dried) and thermally and chemically reactivated composite photocatalyst through six consecutive cycles were monitored. It was established that both thermal and chemical reactivation retain TiO2-SnS2 activity in the second cycle of its reuse. However, both treatments caused the alteration in the TiO2-SnS2 morphology due to the partial transformation of visible-active SnS2 into non-active SnO2. Such alteration, repeated through consecutive reactivation and reuse, was reflected through gradual activity loss of TiO2-SnS2 composite in applied solar-driven water treatment.


Catalyst reuse TiO2-SnS2 composite Thermal reactivation Ozone reactivation Solar water treatment Diclofenac 


Funding information

This study received financial support from the Croatian Science Foundation (Project UIP-11-2013-7900; Environmental Implications of the Application of Nanomaterials in Water Purification Technologies (NanoWaP)).

Supplementary material

11356_2017_667_MOESM1_ESM.doc (582 kb)
ESM 1 (DOC 581 kb)


  1. Cao L, Gao Z, Suib SL, Obee TN, Hay SO, Freihaut JD (2000) Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: studies of deactivation and regeneration. J Catal 196:253–281CrossRefGoogle Scholar
  2. ChemSpider: search and share chemistry (2017) Accessed on July 10, 2017
  3. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRefGoogle Scholar
  4. Debellefontaine H, Chakchouk M, Foussard JN, Tissot D, Striolo P (1996) Treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation. Environ Pollut 92(2):155–164CrossRefGoogle Scholar
  5. EU (2013) Directive 2013/39/EU of the European Parliament and of the Council amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Commun 226:1–17Google Scholar
  6. Farré MJ, Franch MI, Ayllón JA, Peral J, Domènech X (2007) Biodegradability of treated aqueous solutions of biorecalcitrant pesticides by means of photocatalytic ozonation. Desalination 211:22–33CrossRefGoogle Scholar
  7. Gandhi VG, Kumar Mishra M, Joshi PA (2012) A study on deactivation and regeneration of titanium dioxide during photocatalytic degradation of phtalic acid. J Ind Eng Chem 18:1902–1907CrossRefGoogle Scholar
  8. Ganose AM, Scanlon DO (2016) Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics. J Mater Chem C 4:1467–1475CrossRefGoogle Scholar
  9. Garcia-Araya JF, Beltran FJ, Aguinaco A (2010) Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. J Chem Technol Biotechnol 85:798–804CrossRefGoogle Scholar
  10. Huang Y, Zhou Z-H, Wu Y-P, Meng Y-C, Shen S (2011) The relationship between the TiO2 photocatalyst deactivation, regeneration and the concentration of the surface adsorbed SO4 2−. Adv Mater Res 306-307:1557–1562CrossRefGoogle Scholar
  11. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218CrossRefGoogle Scholar
  12. Idris A, Hassan N, Rashid R, Ngomsik A-F (2011) Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (VI) reduction under sunlight. J Hazard Mater 186:629–635CrossRefGoogle Scholar
  13. Kete M, Pavlica E, Fresno F, Bratina G, Lavrencic Stangar U (2014) Highly active photocatalytic coatings prepared by a low-temperature method. Environ Sci Poll Res 21:11238–11249CrossRefGoogle Scholar
  14. Koci K, Obalova L, Matejova L, Placha D, Lacny Z, Jirkovsky J, Solcova O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B 89:494–502CrossRefGoogle Scholar
  15. Kosma CI, Lambropoulou DA, Albanis TA (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466-467:421–438CrossRefGoogle Scholar
  16. Kovacic M, Kusic H, Lavrencic Stangar U, Dionysiou DD, Loncaric Bozic A. (2016a) Solar driven degradation of pharmaceuticals using immobilized composite photocatalyst, Book of Abstracts of The 21st International Conference on Semiconductor Photocatalysis and Solar Energy Conversion (SPASEC-21), Atlanta, GA, November 13–16, 2016; Redox Technologies. London, Ontario, Canada, 2016; SPASEC-21 pp. 50Google Scholar
  17. Kovacic M, Salaeh S, Kusic H, Suligoj A, Kete M, Fanetti M, Lavrencic Stangar U, Dionysiou DD, Loncaric Bozic A (2016b) Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environ Sci Poll Res 23:17982–17994CrossRefGoogle Scholar
  18. Kovacic M, Kusic H, Fanetti M, Lavrencic Stangar U, Valant M, Dionysiou DD, Loncaric BA (2017) TiO2-SnS2 nanocomposites; solar active photocatalytic materials for water treatment. Environ Sci Poll Res 24(2017):19965–19979CrossRefGoogle Scholar
  19. Kumar Reddy PA, Laxma Reddy PV, Sharma V, Srinivas B, Kumari VD, Subrahmanyam M (2010) Photocatalytic degradation of isoproturon pesticide on C, N and S doped TiO2. J Water Resour Prot 2:235–244CrossRefGoogle Scholar
  20. Lazar MA, Varghese S, Nair SS (2012) Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2:572–601CrossRefGoogle Scholar
  21. Lopez R, Gomez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7CrossRefGoogle Scholar
  22. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile?—model studies on epitaxial TiO2 films. Nat Sci Rep 4:4043CrossRefGoogle Scholar
  23. Miranda-García N, Suárez S, Maldonado MI, Malato S, Sánchez B (2014) Regeneration approaches for TiO2 immobilized photocatalyst used in the elimination of emerging contaminants in water. Catal Today 230:27–34CrossRefGoogle Scholar
  24. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, 3rd edn. John Wiley & Sons, HobokenGoogle Scholar
  25. Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A 216:179–182CrossRefGoogle Scholar
  26. Pan L, Zou J-J, Wang S, Huang Z-F, Zhang X, Wang L (2013) Enhancement of visible-light-induced photodegradation over hierarchical porous TiO2 by nonmetal doping and water-mediated dye sensitization. Appl Surf Sci 268:252–258CrossRefGoogle Scholar
  27. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349CrossRefGoogle Scholar
  28. Postigo C, Barceló D (2015) Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. Sci Total Environ 503-504:32–47CrossRefGoogle Scholar
  29. Reszczynska J, Iwulska A, Sliwinski G, Zaleska A (2012) Characterization and photocatalytic activity of rare earth metal-doped titanium dioxide. Physicochem Probl Miner Process 48(1):201–208Google Scholar
  30. Rizzo L, Uyguner CS, Selcuk H, Bekbolet M, Anderson M (2007) Activation of solgel titanium nanofilm by UV illumination for NOM removal. Water Sci Technol 55(12):113–118CrossRefGoogle Scholar
  31. Salaeh S, Kovacic M, Kosir D, Kusic H, Lavrencic Stangar U, Dionysiou DD, Loncaric BA (2017) Reuse of TiO2-based catalyst for solar driven water treatment; thermal and chemical reactivation. J Photochem Photobiol A 333:117–129CrossRefGoogle Scholar
  32. Sein MM, Zedda M, Tuerk J, Schmidt TC, Golloch A, Von Sonntag C (2008) Oxidation of diclofenac with ozone in aqueous solution. Environ Sci Technol 42(17):6656–6662CrossRefGoogle Scholar
  33. Setvín M, Aschauer U, Scheiber P, Li YF, Hou W, Schmid M, Selloni A, Diebold U (2013) Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 341(6149):988–991CrossRefGoogle Scholar
  34. Spasiano D, Marotta R, Malato S, Fernandez-Ibañez P, Di Somma I (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B 170-171:90–123CrossRefGoogle Scholar
  35. Stülten D, Zühlke S, Lamshöft M, Spiteller M (2008) Occurrence of diclofenac and selected metabolites in sewage effluents. Sci Total Environ 405:310–316CrossRefGoogle Scholar
  36. Sui Q, Cao X, Lu S, Zhao W, Qiu Z, Yu G (2015) Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review. Emerg Cont 1:14–24CrossRefGoogle Scholar
  37. Trovo AG, Nogueira RFP (2011) Diclofenac abatement using modified solar photo-Fenton process with ammonium iron(III) citrate. J Braz Chem Soc 22(6):1033–1039CrossRefGoogle Scholar
  38. Vogna D, Marotta R, Napolitano A, Andreozzi R, d’Ischia M (2004) Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res 38:414–422CrossRefGoogle Scholar
  39. Xu K, Li N, Zeng D, Tian S, Zhang S, Hu D, Xie C (2015) Interface bonds determined gas-sensing of SnO2−SnS2 hybrids to ammonia at room temperature. Appl Mater Interfaces 7:11359–11368CrossRefGoogle Scholar
  40. Yao L, Zhang YC, Li J, Chen Y (2014) Photocatalytic properties of SnS2/SnO2 nanocomposite prepared by thermal oxidation of SnS2 nanoparticles in air. Sep Purif Technol 122:1–5CrossRefGoogle Scholar
  41. Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J Hazard Mater 171:551–562CrossRefGoogle Scholar
  42. Zhang YC, Du ZN, Li KW, Zhang M, Dionysiou DD (2011) High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS2 nanoparticles. Appl Mater Interfaces 3(5):1528–1537CrossRefGoogle Scholar
  43. Zhang YC, Li J, Xu HY (2012) One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Appl Catal B 123-124:18–26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Marin Kovacic
    • 1
  • Nina Kopcic
    • 1
  • Hrvoje Kusic
    • 1
    Email author
  • Urska Lavrencic Stangar
    • 2
    • 3
  • Dionysios D. Dionysiou
    • 4
  • Ana Loncaric Bozic
    • 1
    Email author
  1. 1.Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia
  2. 2.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Laboratory for Environmental ResearchUniversity of Nova GoricaNova GoricaSlovenia
  4. 4.Environmental Engineering and Science ProgramUniversity of CincinnatiCincinnatiUSA

Personalised recommendations