Skip to main content

Plant assays and avoidance tests with collembola and earthworms demonstrate rehabilitation success in bauxite residue

Abstract

Bauxite residues are a by-product of alumina manufacture from bauxite ore and are commonly disposed of in purpose-built bauxite residue disposal areas (BRDAs). Revegetation is viewed as the most effective way to landscape and rehabilitate closed BRDAS and physicochemical assessment remains the primary indicator of rehabilitation success. Little is known about the ability of keystone mesofaunal species to colonise and establish in these environments yet the long-term success of rehabilitation is dependent on residues becoming suitable habitats for such groups. Using six different residue treatments (untreated, leached, organic application, organic amended, and two revegetated field treatments) together with OECD test soil, this study assessed the characteristics of residues with plant germination and seedling development using the Rhizotest™ approach with Lepidium sativum, Sinapis alba, and Sorghum bicolor. Avoidance tests with soil mesofauna Eisenia foetida together with growth and reproduction tests for Folsomia candida were conducted to determine possibility of inhibition in residue soils. Unamended residue is inhibitory to plant growth and mesofaunal establishment. Amendment improves the physicochemical properties of the residue, and data revealed that both gypsum and organic addition is required to promote conditions favourable to plant growth and mesofauna establishment. Earthworms avoid residues with elevated Na content but will choose substrate with high soluble Ca content. F. candida preferentially moves to residues from field treatments, and both mortality and reproduction rates are comparable or superior to OECD soil. On the basis of these assays, we propose that bauxite residue can be transformed to a soil-like medium capable of supporting keystone species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alvarenga P, Palma P, Gonçalves AP, Fernandes RM, De Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of tests to assess the quality of mine-contaminated soils. Environ Geochem Hlth 30:95–99

    CAS  Article  Google Scholar 

  2. Amzallag GN, Lerner HR, Poljakoff-Mayber A (1990) Induction of increased salt tolerance in Sorghum bicolor by NaCl pretreatment. J Exp Bot 41:29–34

    CAS  Article  Google Scholar 

  3. Anderson JD, Bell RW, Phillips IR (2011) Bauxite residue fines as an amendment to residue sands to enhance plant growth potential—a glasshouse study. J Soils Sediments 11:889–902

    CAS  Article  Google Scholar 

  4. Azhar FM, McNeilly T (1988) The genetic basis of variation for salt tolerance in Sorghum bicolor (L.) Moench seedlings. Plant Breed 101(2):114–121

    CAS  Article  Google Scholar 

  5. Borra CR, Pontikes Y, Binnemans K, Van Gerven T (2015) Leaching of rare earths from bauxite residue (red mud). Miner Eng 76:20–27

    CAS  Article  Google Scholar 

  6. Burke IT, Peacock CL, Lockwood CL, Stewart DI, Mortimer RJ, Ward MB, Renforth P, Gruiz K, Mayes WM (2013) Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater. Environ Sci Technol 47:6527–6535

    CAS  Article  Google Scholar 

  7. Chapman EEV, Helmer SH, Dave G, Murimboh JD (2012) Utility of bioassays (lettuce, red clover, red fescue, Microtox, MetSTICK, Hyalella, bait lamina) in ecological risk screening of acid metal (Zn) contaminated soil. Ecotox Environ Safe 80:161–171

    CAS  Article  Google Scholar 

  8. Clohessy J (2015) Closure and rehabilitation of Rusal Aughinish BRDA, presented at the Residue Closure and Rehabilitation Workshop, 10th Alumina Quality Workshop. Perth, Western Australia

    Google Scholar 

  9. Courtney R, Harrington T (2012) Growth and nutrition of Holcus lanatus in bauxite residue amended with combinations of spent mushroom compost and gypsum. Land Degrad Dev 23:144–149

    Article  Google Scholar 

  10. Courtney RG, Timpson JP (2005) Reclamation of fine fraction bauxite processing residue (red mud) amended with coarse fraction residue and gypsum. Water Air Soil Poll 164:91–102

    CAS  Article  Google Scholar 

  11. Courtney R, Mullen G, Harrington T (2009) An evaluation of revegetation success on bauxite residue. Restor Ecol 17:350–358

    Article  Google Scholar 

  12. Courtney R, Harrington T, Byrne KA (2013) Indicators of soil formation in restored bauxite residues. Ecol Eng 58:63–68

    Article  Google Scholar 

  13. Courtney R, Harris JA, Pawlett M (2014) Microbial community composition in a rehabilitated bauxite residue disposal area: a case study for improving microbial community composition. Restor Ecol 22:798–805

    Article  Google Scholar 

  14. Crouau Y, Pinelli E (2008) Comparative ecotoxicity of three polluted industrial soils for the Collembola Folsomia candida. Ecotox Environ Safe 71:643–649

    CAS  Article  Google Scholar 

  15. Da Luz TN, Ribeiro R, Sousa JP (2004) Avoidance tests with collembola and earthworms as early screening tools for site-specific assessment of polluted soils. Environ Toxicol Chem 23:2188–2193

    Article  Google Scholar 

  16. Domene X, Colón J, Uras MV, Izquierdo R, Àvila A, Alcañiz JM (2010) Role of soil properties in sewage sludge toxicity to soil collembolans. Soil Biol Biochem 42:1982–1990

    CAS  Article  Google Scholar 

  17. Evans K (2016) The history, challenges, and new developments in the management and use of bauxite residue. J Sustain Metall 2:316–331

    Article  Google Scholar 

  18. Frouz J, Elhottová D, Kuráž V, Šourková M (2006) Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: results of a field microcosm experiment. Appl Soil Ecol 33:308–320

    Article  Google Scholar 

  19. Frouz J, Elhottova D, Pižl V, Tajovský K, Šourková M, Picek T, Malý S (2007) The effect of litter quality and soil faunal composition on organic matter dynamics in post-mining soil: a laboratory study. Appl Soil Ecol 37:72–80

    Article  Google Scholar 

  20. Frouz J, Hrčková K, Lána J, Krištůfek V, Mudrák O, Lukešová A, Mihaljevič M (2011) Can laboratory toxicity tests explain the pattern of field communities of algae, plants, and invertebrates along a toxicity gradient of post-mining sites. Appl Soil Ecol 51:114–121

    Article  Google Scholar 

  21. Gräfe M, Klauber C (2011) Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy 108:46–59

    Article  Google Scholar 

  22. Greenslade P, Vaughan GT (2003) A comparison of Collembola species for toxicity testing of Australian soils. Pedobiologia 47:171–179

    CAS  Article  Google Scholar 

  23. Higgins D, Curtin T, Pawlett M, Courtney R (2016) The potential for constructed wetlands to treat alkaline bauxite-residue leachate: Phragmites australis growth. Environ Sci Pollut R 23:24305–24315

    CAS  Article  Google Scholar 

  24. Hua Y, Heal KV, Friesl-Hanl W (2017) The use of red mud as an immobiliser for metal/metalloid-contaminated soil: a review. J Hazard Mater 325:17–30

    CAS  Article  Google Scholar 

  25. Jones BE, Haynes RJ (2011) Bauxite processing residue: a critical review of its formation, properties, storage, and revegetation. Crit Rev Env Sci Tech 41:271–315

    CAS  Article  Google Scholar 

  26. Jones BE, Haynes RJ, Phillips IR (2011) Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand. Environ Sci Pollut R 18:199–211

    CAS  Article  Google Scholar 

  27. Kaur N, Phillips I, Fey MV (2016) Amelioration of bauxite residue sand by intermittent additions of nitrogen fertiliser and leaching fractions: the effect on growth of kikuyu grass and fate of applied nutrients. Sci Total Environ 550:362–371

    CAS  Article  Google Scholar 

  28. Kinraide TB (1999) Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J Exp Bot 50:1495–1505

    CAS  Article  Google Scholar 

  29. Kuperman RG, Amorim MJB, Römbke J, Lanno R, Checkai RT, Dodard SG, Sunahara GI, Scheffczyk A (2006) Adaptation of the enchytraeid toxicity test for use with natural soil types. Eur J Soil Biol 42:S234–S243

    Article  Google Scholar 

  30. Løkke H, van Gestel CAM (1998) Handbook of soil invertebrate toxicity tests. Wiley & Sons, Chichester

    Google Scholar 

  31. Loureiro S, Soares AM, Nogueira AJ (2005) Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environ Pollut 138:121–131

    CAS  Article  Google Scholar 

  32. Ma Y, Dickinson NM, Wong MH (2006) Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biol Biochem 38:1403–1412

    CAS  Article  Google Scholar 

  33. McShane H, Sarrazin M, Whalen JK, Hendershot WH, Sunahara GI (2012) Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil. Environ Toxicol Chem 31:184–193

    CAS  Article  Google Scholar 

  34. Mudrák O, Uteseny K, Frouz J (2012) Earthworms drive succession of both plant and Collembola communities in post-mining sites. Appl Soil Ecol 62:170–177

    Article  Google Scholar 

  35. OECD (Organization for Economic Cooperation and Development) Guideline for testing of chemicals no. 207 (1984) Earthworm. Acute Toxicity Tests Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  36. Orozco FH, Cegarra J, Trujillo LM, Roig A (1996) Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biol Fert. Soils 22(1):62–166

    Google Scholar 

  37. Owojori OJ, Reinecke AJ, Voua-Otomo P, Reinecke SA (2009) Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). Pedobiologia 52:351–360

    CAS  Article  Google Scholar 

  38. Pereira JL, Antunes SC, Ferreira AC, Goncalves F, Pereira R (2010) Avoidance behavior of earthworms under exposure to pesticides: is it always chemosensorial? J Environ Sci Heal B 45:229–232

    CAS  Article  Google Scholar 

  39. Qin J, Hovmand MF, Ekelund F, Rønn R, Christensen S, de Groot GA, Mortensen LH, Skov S, Krogh PH (2017) Wood ash application increases pH but does not harm the soil mesofauna. Environ Pollut 224:581–589

    CAS  Article  Google Scholar 

  40. Satchell J, Stone DA (1972 Earthworm activity in pulverised fuel ash sites restored to agriculture. Report to Central Electricity Generating Board

  41. Somers CM, Neudorf K, Jones KL, Lance SL (2011) Novel microsatellite loci for the compost earthworm Eisenia fetida: a genetic comparison of three North American vermiculture stocks. Pedobiologia 54:111–117

    CAS  Article  Google Scholar 

  42. Southwell LT, Majer JD (1982) The survival and growth of the earthworm Eisenia Foetida (Lumbricidae: Oligochaeta) in alkaline residues associated with the bauxite refining process. Pedobiologia 23:42–52

    Google Scholar 

  43. Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228

    CAS  Article  Google Scholar 

  44. Wadhia K, Thompson KC (2007) Low-cost ecotoxicity testing of environmental samples using microbiotests for potential implementation of the Water Framework Directive. Trac-Trend Anal Chem 26:300–307

    CAS  Article  Google Scholar 

  45. Winkler D (2014) Collembolan response to red mud pollution in Western Hungary. Appl Soil Ecol 83:219–229

    Article  Google Scholar 

  46. Xue S, Zhu F, Kong X, Wu C, Huang L, Huang N, Hartley W (2016) A review of the characterization and revegetation of bauxite residues (Red mud). Environ Sci Pollut R 23:1120–1132

    CAS  Article  Google Scholar 

  47. Ye ZH, Shu WS, Zhang ZQ, Lan CY, Wong MH (2002) Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere 30:1103–1111

    Article  Google Scholar 

  48. Zhang C, Bian M, Yu H, Liu Q, Yang Z (2011) Identification of alkaline stress-responsive genes of CBL family in sweet sorghum (Sorghum bicolor L.) Plant Physiol Bioch 49:1306–1312

    CAS  Article  Google Scholar 

  49. Zhu F, Xue S, Hartley W, Huang L, Wu C, Li X (2016) Novel predictors of soil genesis following natural weathering processes of bauxite residues. Environ Sci Pollut R 23:2856–2863

    CAS  Article  Google Scholar 

Download references

Funding

This research was funded by the Irish Research Council Postgraduate Scholarship award (GOIPG/2013/646).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ronan Courtney.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finngean, G., O’Grady, A. & Courtney, R. Plant assays and avoidance tests with collembola and earthworms demonstrate rehabilitation success in bauxite residue. Environ Sci Pollut Res 25, 2157–2166 (2018). https://doi.org/10.1007/s11356-017-0632-8

Download citation

Keywords

  • Alkaline characteristics
  • Bioassays
  • Earthworm avoidance test
  • Root elongation
  • Soluble ions