Skip to main content

Environmentally benign nanometric neem-laced urea emulsion for controlling mosquito population in environment

Abstract

The increasing risk of vector-borne diseases and the environmental pollution in the day-to-day life due to the usage of the conventional pesticides makes the role of nanotechnology to come into the action. The current study deals with one of the applications of nanotechnology through the formulation of neem urea nanoemulsion (NUNE). NUNE was formulated using neem oil, Tween 20, and urea using the microfluidization method. Prior to the development of nanoemulsion, the ratio of oil/surfactant/urea was optimized using the response surface modeling method. The mean droplet size of the nanoemulsion was found to be 19.3 ± 1.34 nm. The nanoemulsion was found to be stable for the period of 4 days in the field conditions which aids to its mosquitocidal activity. The nanoemulsion exhibited a potent ovicidal and larvicidal activity against A. aegypti and C. tritaeniorhynchus vectors. This result was corroborated with the histopathological analysis of the NUNE-treated larvae. Further, the effect of NUNE on the biochemical profile of the target host was assessed and was found to be efficacious compared to the bulk counterpart. The nanoemulsion was then checked for its biosafety towards the non-target species like plant beneficial bacterium (E. ludwigii), and phytotoxicity was assessed towards the paddy plant (O. sativa). Nanometric emulsion at the concentration used for the mosquitocidal application was found to be potentially safe towards the environment. Therefore, the nanometric neem-laced urea emulsion tends to be an efficient mosquito control agent with an environmentally benign property.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Abdullah M, Koc AB (2013) Kinetics of ultrasound-assisted oil extraction from Black seed (Nigella sativa). J Food Process Preserv 37(5):814–823

    CAS  Article  Google Scholar 

  2. Anjali C, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163

    CAS  Article  Google Scholar 

  3. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    CAS  Article  Google Scholar 

  4. Bai L, Huan S, Gu J, McClements DJ (2016) Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocoll 61:703–711

    CAS  Article  Google Scholar 

  5. Balaji A, Mishra P, Kumar RS, Mukherjee A, Chandrasekaran N (2015) Nanoformulation of poly (ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control. Colloids Surf B: Biointerfaces 128:370–378

    CAS  Article  Google Scholar 

  6. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397

    Article  Google Scholar 

  7. Benelli G, Canale A, Higuchi A, Murugan K, Pavela R, Nicoletti M (2016) The recent outbreaks of Zika virus: mosquito control faces a further challenge. Asian Pac J Trop Dis 6:253–258

    Article  Google Scholar 

  8. Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Current Science-Bangalore 82(11):1336–1345

  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  Google Scholar 

  10. Chaudhary S, Kanwar RK, Sehgal A, Cahill DM, Barrow CJ, Sehgal R, Kanwar JR (2017) Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Front Plant Sci 8:610. https://doi.org/10.3389/fpls.2017.00610

    Article  Google Scholar 

  11. Chen MJ, Chen KN, Lin CW (2004) Sequential quadratic programming for development of a new probiotic dairy tofu with glucono-δ-lactone. J Food Sci 69:344–350

    Article  Google Scholar 

  12. Chenniappan K, Kadarkarai M (2008) Oviposition deterrent, ovicidal and gravid mortality effects of ethanolic extract of Andrographis paniculata Nees against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Entomolog Res 38:119–125

    Article  Google Scholar 

  13. Chinnamuthu CR, Murugesa Boopathi P (2009) Nanotechnology and agroecosystem. Madras Agric J 96(1–6):17–31

    Google Scholar 

  14. Dalai S, Pakrashi S, Kumar RS, Chandrasekaran N, Mukherjee A (2012) A comparative cytotoxicity study of TiO 2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res 1:116–130

    CAS  Article  Google Scholar 

  15. Delmas T, Piraux H, Couffin A-C, Texier I, Vinet F, Poulin P, Cates ME, Bibette J (2011) How to prepare and stabilize very small nanoemulsions. Langmuir 27:1683–1692

    CAS  Article  Google Scholar 

  16. Dhanam S (2009) Effect of dairy effluent on seed germination, seedling growth and biochemical parameter in Paddy. Bot Res Int 2:61–63

    CAS  Google Scholar 

  17. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529

    Article  Google Scholar 

  18. Elhag E, Rahman A-E, El Nadi H, Zaitoon A (2001) Effects of methanolic extracts of neem seeds on egg hatchability and larval development of Culex pipiens mosquitoes. Indian Vet J 78:199–201

    Google Scholar 

  19. Etebari K, Bizhannia A, Sorati R, Matindoost L (2007) Biochemical changes in haemolymph of silkworm larvae due to pyriproxyfen residue. Pestic Biochem Physiol 88:14–19

    CAS  Article  Google Scholar 

  20. Farnesi LC, Brito JM, Linss JG, Pelajo-Machado M, Valle D, Rezende GL (2012) Physiological and morphological aspects of Aedes aegypti developing larvae: effects of the chitin synthesis inhibitor novaluron. PLoS One 7:e30363

    CAS  Article  Google Scholar 

  21. Gassama UM, Puteh AB, Abd-Halim MR, Kargbo B (2015) Influence of municipal wastewater on rice seed germination, seedling performance, nutrient uptake, and chlorophyll content. J Crop Sci Biotechnol 18:9–19

    Article  Google Scholar 

  22. Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N (2013) Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J Nanosci Nanotechnol 13:114–122

    CAS  Article  Google Scholar 

  23. Gothsch T, Finke JH, Beinert S, Lesche C, Schur J, Buettgenbach S, Müller-Goymann C, Kwade A (2011) Effect of microchannel geometry on high-pressure dispersion and emulsification. Chem Eng Technol 34:335–343

    CAS  Article  Google Scholar 

  24. Gould W, Hagedorn C, McCready R (1986) Urea transformations and fertilizer efficiency in soil. Adv Agron 40:209–238

    CAS  Article  Google Scholar 

  25. Govindarajan M, Rajeswary M, Sivakumar R (2013) Larvicidal & ovicidal efficacy of Pithecellobium dulce (Roxb.) Benth.(Fabaceae) against Anopheles stephensi Liston & Aedes aegypti Linn.(Diptera: Culicidae). Indian J Med Res 138:129

    CAS  Google Scholar 

  26. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    CAS  Article  Google Scholar 

  27. Jafari SM, He Y, Bhandari B (2006) Nano-emulsion production by sonication and microfluidization—a comparison. Int J Food Prop 9(3):475–485

    CAS  Article  Google Scholar 

  28. Jafari SM, He Y, Bhandari B (2007a) Optimization of nano-emulsions production by microfluidization. Eur Food Res Technol 225(5–6):733–741

    CAS  Article  Google Scholar 

  29. Jafari SM, He Y, Bhandari B (2007b) Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng 82(4):478–488

    Article  Google Scholar 

  30. Jayaseelan C, Rahuman AA, Rajakumar G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194

    Article  Google Scholar 

  31. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    CAS  Article  Google Scholar 

  32. Johnson S, Dureja P, Dhingra S (2003) Photostabilizers for Azadirachtin-A (a neem-based pesticide). J Environ Sci Health B 38:451–462

    Article  Google Scholar 

  33. Junqueira R, Castro I, Areas J, Silva A, Scholz M, Mendes S, Oliveira K (2007) Application of response surface methodology for the optimization of oxidants in wheat flour. Food Chem 101:131–139

    CAS  Article  Google Scholar 

  34. Juttulapa M, Piriyaprasarth S, Takeuchi H, Sriamornsak P (2017) Effect of high-pressure homogenization on stability of emulsions containing zein and pectin. Asian J Pharm Sci 12(1):21–27

    Article  Google Scholar 

  35. Kady G, Kamel NH, Mosleh YY, Bahght IM (2008) Comparative toxicity of two bio-insecticides (Spinotoram and Vertemic) compared with methomyl against Culex pipiens and Anopheles multicolor. World J Agric Sci 4:198–205

    Google Scholar 

  36. Karunyal S, Renuga G, Kailash P (1994) Effects of tannery effluent on seed germination, leaf area, biomass and mineral content of some plants. Bioresour Technol 47(3):215–218

    CAS  Article  Google Scholar 

  37. Kaufmann C, Brown MR (2008) Regulation of carbohydrate metabolism and flight performance by a hypertrehalosaemic hormone in the mosquito Anopheles gambiae. J Insect Physiol 54:367–377

    CAS  Article  Google Scholar 

  38. Khazaei KM, Jafari SM, Ghorbani M, Kakhki AH, Sarfarazi M (2016) Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Anal Methods 9(7):1993–2001

    Article  Google Scholar 

  39. Khosravi R, Sendi JJ (2013) Effect of neem pesticide (Achook) on midgut enzymatic activities and selected biochemical compounds in the hemolymph of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). J Plant Prot Res 53:238–247

    Article  Google Scholar 

  40. Kordon H (1992) Seed viability and germination: a multi-purpose experimental system. J Biol Educ 26:247–251

    Article  Google Scholar 

  41. Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Berugoda Arachchige DM, Kumarasinghe AR, Dahanayake D, Karunaratne V, Amaratunga GA (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11(2):1214–1221

    CAS  Article  Google Scholar 

  42. Kovendan K, Murugan K, Vincent S (2012) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd.(Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 110:571–581

    Article  Google Scholar 

  43. Kraiss H, Cullen EM (2008) Insect growth regulator effects of azadirachtin and neem oil on survivorship, development and fecundity of Aphis glycines (Homoptera: Aphididae) and its predator, Harmonia axyridis (Coleoptera: Coccinellidae). Pest Manag Sci 64:660–668

    CAS  Article  Google Scholar 

  44. Kumari J, Kumar D, Mathur A, Naseer A, Kumar RR, Thanjavur Chandrasekaran P, Chaudhuri G, Pulimi M, Raichur AM, Babu S, Chandrasekaran N, Nagarajan R, Mukherjee A (2014) Cytotoxicity of TiO2 nanoparticles towards freshwater sediment microorganisms at low exposure concentrations. Environ Res 135:333–345

  45. Lin CC, Kao CH (1996) Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl. Plant Growth Regul 18:233–238

    CAS  Article  Google Scholar 

  46. Locke M, Huie P (1981) Epidermal feet in pupal segment morphogenesis. Tissue Cell 13:787–803

    CAS  Article  Google Scholar 

  47. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 10:2212–2224

    Google Scholar 

  48. Martinez SS, Van Emden HF (2001) Growth disruption, abnormalities and mortality of Spodoptera littoralis (Boisduval)(Lepidoptera: Noctuidae) caused by azadirachtin. Neotrop Entomol 30:113–125

    CAS  Article  Google Scholar 

  49. McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51(4):285–330

  50. Mishra P, Balaji A, Swathy J, Paari AL, Kezhiah M, Tyagi B, Mukherjee A, Chandrasekaran N (2016) Stability assessment of hydro dispersive nanometric permethrin and its biosafety study towards the beneficial bacterial isolate from paddy rhizome. Environ Sci Pollut Res 23:24970–24982

    CAS  Article  Google Scholar 

  51. Mishra P, Balaji A, Dhal P, Kumar RS, Magdassi S, Margulis K, Tyagi B, Mukherjee A, Chandrasekaran N (2017) Stability of nano-sized permethrin in its colloidal state and its effect on the physiological and biochemical profile of Culex tritaeniorhynchus larvae. Bull Entomol Res:1–13

  52. Mohan L, Sharma P, Srivastava C (2005) Evaluation of Solanum xanthocarpum extracts as mosquito larvicides. J Environ Biol 26:399–401

    Google Scholar 

  53. Murugan K, Benelli G, Suganya A, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 14:2243–2253

    Article  Google Scholar 

  54. Nicoletti M, Murugan K, Canale A, Benelli G (2016) Neem-borne molecules as eco-friendly control tools against mosquito vectors of economic importance. Curr Org Chem 20:2681–2689

    CAS  Article  Google Scholar 

  55. Organization for Economic Cooperation and Development (OECD) (2002) Guidelines for the testing of chemicals. Draft test guideline 221: Lemna sp. Growth inhibition test

  56. Pérez-de-Luque A, Hermosín MC (2013) Nanotechnology and its use in agriculture. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F (eds) Bio-nanotechnology: a revolution in food, biomedical and health sciences. Wiley, West Sussex, pp 299–405

    Google Scholar 

  57. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi A, Kalimuthu K, Thangamani S (2012) Synthesis ofsilver nanoparticles usingleaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian-Pacif J Trop Biomed 2:574–580

    CAS  Article  Google Scholar 

  58. Preetz C, Hauser A, Hause G, Kramer A, Mäder K (2010) Application of atomic force microscopy and ultrasonic resonator technology on nanoscale: distinction of nanoemulsions from nanocapsules. Eur J Pharm Sci 39:141–151

    CAS  Article  Google Scholar 

  59. Priyadarshini AK, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111:997–100

    Article  Google Scholar 

  60. Qian C, McClements DJ (2011) Formation of nanoemulsions stabilized by model food-grade emulsifiers using microfluidization: factors affecting particle size. Food Hydrocoll 25:1000–1008

    CAS  Article  Google Scholar 

  61. Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MM, Tasmen A (2007) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67:1072–1079

    CAS  Article  Google Scholar 

  62. Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104:337–340

    CAS  Article  Google Scholar 

  63. Rajkumar S, Jebanesan A, Nagarajan R (2011) Effect of leaf essential oil of Coccinia indica on egg hatchability and different larval instars of malarial mosquito Anopheles stephensi. Asian Pac J Trop Med 4:948–951

    CAS  Article  Google Scholar 

  64. Rao J, McClements DJ (2010) Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. J Agric Food Chem 58:7059–7066

    CAS  Article  Google Scholar 

  65. Rao J, McClements DJ (2011) Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method. J Agric Food Chem 59:5026–5035

    CAS  Article  Google Scholar 

  66. Revathi K, Chandrasekaran R, Thanigaivel A, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2013) Effects of Bacillus subtilis metabolites on larval Aedes aegypti L. Pestic Biochem Physiol 107:369–376

    CAS  Article  Google Scholar 

  67. Riddick, T. M. (1968). Control of colloid stability through zeta potential. Blood, 10(1)

  68. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702

    Article  Google Scholar 

  69. Sarfarazi M, Jafari SM, Rajabzadeh G (2015) Extraction optimization of saffron nutraceuticals through response surface methodology. Food Anal Methods 8(9):2273–2285

    Article  Google Scholar 

  70. Shankar S, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    CAS  Article  Google Scholar 

  71. Sharma P, Mohan L, Srivastava CN (2004) Larval susceptibility of Ajuga remota against anopheline and culicine mosquitos. Southeast Asian J Trop Med Public Health 35:608–610

  72. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma M (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10:102–110

    CAS  Article  Google Scholar 

  73. Su T, Mulla M (1998) Ovicidal activity of neem products (azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J Am Mosq Control Assoc 14:204–209

    CAS  Google Scholar 

  74. Subbaiya R, Priyanka M, Selvam MM (2012) Formulation of green nano-fertilizer to enhance the plant growth through slow and sustained release of nitrogen. J Pharm Res 5:5178–5183

    CAS  Google Scholar 

  75. Sugumar S, Nirmala J, Ghosh V, Anjali H, Mukherjee A, Chandrasekaran N (2013) Bio-based nanoemulsion formulation, characterization and antibacterial activity against food-borne pathogens. J Basic Microbiol 53:677–685

    CAS  Article  Google Scholar 

  76. Sukumar K, Perich MJ, Boobar L (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237

    CAS  Google Scholar 

  77. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  Google Scholar 

  78. Sutherland P, Burgess E, Philip B, McManus M, Watson L, Christeller J (2002) Ultrastructural changes to the midgut of the black field cricket (Teleogryllus commodus) following ingestion of potato protease inhibitor II. J Insect Physiol 48:327–336

    CAS  Article  Google Scholar 

  79. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interf Sci 108:303–318

    Article  Google Scholar 

  80. Tan CP, Nakajima M (2005) β-Carotene nanodispersions: preparation, characterization and stability evaluation. Food Chem 92:661–671

    CAS  Article  Google Scholar 

  81. Templeman W (1961) Urea as a fertilizer. J Agric Sci 57:237–239

    Article  Google Scholar 

  82. Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47–61

    CAS  Article  Google Scholar 

  83. U.S. Environmental Protection Agency (2005) Nanotechnology White Paper e External Review Draft. Available from: http://www.epa.gov/osa/pdfs/EPA_nanotechnology_white_paper_external_review_draft_12-02-2005.pdf

  84. Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S, Vaseeharan B (2015) Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim Acta A Mol Biomol Spectrosc 137:886–891

    CAS  Article  Google Scholar 

  85. WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. CDS/ WHOPES/GCDPP/05.13

  86. Yolmeh M, Jafari SM (2017) Applications of response surface methodology in the food industry processes. Food Bioprocess Technology 10(3):413–433

    CAS  Article  Google Scholar 

  87. Yones DA, Bakir HY, Bayoumi SA (2016) Chemical composition and efficacy of some selected plant oils against Pediculus humanus capitis in vitro. Parasitol Res 115:3209–3218

    Article  Google Scholar 

  88. Yuval B, Holliday-Hanson ML, RK W (1994) Energy budget of swarming male mosquitoes. Ecol Entomol 19:74–78

    Article  Google Scholar 

  89. Zainol S, Basri M, Basri HB, Shamsuddin AF, Abdul-Gani SS, Karjiban RA, Abdul-Malek E (2012) Formulation optimization of a palm-based nanoemulsion system containing levodopa. Int J Mol Sci 13:13049–13064

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Vellore Institute of Technology for providing the laboratory space and facilities. We deeply acknowledge ICMR VSF (VIR/RCI/AES/58/2014/ECD-1) for the financial aid provided by them. We also acknowledge Dr. K. Gopalarathinam, Senior Entomologist, ZET, Vellore, for his immense help in the identification of the mosquito species.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Natarajan Chandrasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOC 196 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, P., Samuel, M.K., Reddy, R. et al. Environmentally benign nanometric neem-laced urea emulsion for controlling mosquito population in environment. Environ Sci Pollut Res 25, 2211–2230 (2018). https://doi.org/10.1007/s11356-017-0591-0

Download citation

Keywords

  • Response surface modeling
  • High-pressure homogenization
  • Neem urea nanoemulsion
  • Larvicidal
  • Ovicidal
  • Enterobacter ludwigii
  • Oryza sativa
  • Aedes aegypti
  • Culex tritaeniorhynchus