Skip to main content
Log in

Enantioselective degradation of Myclobutanil and Famoxadone in grape

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The enantioselective degradation of myclobutanil and famoxadone enantiomers in grape under open field was investigated in this study. The absolute configuration of myclobutanil and famoxadone enantiomers was determined by the combination of experimental electronic circular dichroism (ECD) and calculated ECD spectra. The enantiomers residues of myclobutanil and famoxadone in grape were measured by sensitive high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS). The linearity, precision, accuracy, matrix effect, and stability were assessed. And the limit of quantification (LOQ) for each enantiomer of myclobutanil and famoxadone in grape was evaluated to be 1.5 and 2 μg kg−1. The myclobutanil and famoxadone showed the enantioselective degradation in grape, and the enantioselectivity of degradation for myclobutanil was more pronounced than that for famoxadone. The half-lives were 13.1 days and 25.7 days for S-(+)-myclobutanil and R-(−)-myclobutanil in grape, separately. The half-life of S-(+)-famoxadone was 31.5 days slightly shorter than that of R-(−)-famoxadone with half-life being 38.5 days in grape. The probable reasons for the enantioselective degradation behavior of these two fungicides were also discussed. The results in the article might provide a reference to better assess the risks of myclobutanil and famoxadone enantiomers in grapes to human and environment.

The enantioselective analysis of myclobutanil and famoxadone in grape

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurin fungicides. Pest Manag Sci 58(7):649–662

    Article  CAS  Google Scholar 

  • Buerge IJ, Krauss J, López-Cabeza R, Siegfried W, Stüssi M, Wettstein FE, Poiger T (2016) Stereoselective metabolism of the sterol biosynthesis inhibitor fungicides fenpropidin, fenpropimorph, and spiroxamine in grapes, sugar beets, and wheat. J Agric Food Chem 64(26):5301

    Article  CAS  Google Scholar 

  • Cheng C, Huang L, Diao J, Zhou Z (2013) Enantioselective toxic effects and degradation of myclobutanil enantiomers in Scenedesmus obliquus. Chirality 25(12):858–864

    Article  CAS  Google Scholar 

  • Dong F, Liu X, Zheng Y, Cao Q, Li C (2010) Stereoselective degradation of fungicide triadimenol in cucumber plants. Chirality 22(2):292–298

    Article  CAS  Google Scholar 

  • Dong F, Cheng L, Liu X, Xu J, Li J, Li Y, Kong Z, Jian Q, Zheng Y (2012) Enantioselective analysis of triazole fungicide myclobutanil in cucumber and soil under different application modes by chiral liquid chromatography/tandem mass spectrometry. J Agric Food Chem 60(8):1929–1936

    Article  CAS  Google Scholar 

  • Jordan DB, Livingston RS, Bisaha JJ, Duncan KE, Pember SO, Picollelli MA, Schwartz RS, Sternberg JA, Tang XS (1999) Mode of action of famoxadone. Pestic Sci 55(2):105–118

    Article  CAS  Google Scholar 

  • Li Z, Zhang Z, Zhang L, Leng L (2009) 3 isomer- and enantioselective degradation and chiral stability of fenpropathrin and fenvalerate in soils. Chemosphere 76(4):509–516

    Article  Google Scholar 

  • Li Y, Dong F, Liu X, Xu J, Han Y, Zheng Y (2014) Chiral fungicide triadimefon and triadimenol: stereoselective transformation in greenhouse crops and soil, and toxicity to Daphnia magna. J Hazard Mater 265:115–123

    Article  CAS  Google Scholar 

  • Li Y, Dong F, Liu X, Xu J, Han Y, Zheng Y (2015) Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils. Chemosphere 122:145–153

    Article  CAS  Google Scholar 

  • Liu W, Gan J, Schlenk D, Jury WA (2005) Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci U S A 102(3):701–706

    Article  CAS  Google Scholar 

  • Liu W, Ye J, Jin M (2009) Enantioselective phytoeffects of chiral pesticides. J Agric Food Chem 57(6):2087–2095

    Article  CAS  Google Scholar 

  • Marin-Benito JM, Herrero-Hernandez E, Andrades MS, Sanchez-Martin MJ, Rodriguez-Cruz MS (2014) Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods. Sci Total Environ 476-477:611–621

    Article  CAS  Google Scholar 

  • Qian M, Wu L, Zhang H, Wang J, Li R, Wang X, Chen Z (2011) Stereoselective determination of famoxadone enantiomers with HPLC-MS/MS and evaluation of their dissipation process in spinach. J Sep Sci 34(11):1236–1243

    Article  CAS  Google Scholar 

  • Qiu J, Dai S, Zheng C, Yang S, Chai T, Bie M (2011) Enantiomeric separation of triazole fungicides with 3-mum and 5-muml particle chiral columns by reverse-phase high-performance liquid chromatography. Chirality 23(6):479–486

    Article  CAS  Google Scholar 

  • Qu H, Ma RX, Liu DH, Gao J, Wang F, Zhou ZQ, Wang P (2016) Environmental behavior of the chiral insecticide fipronil: enantioselective toxicity, distribution and transformation in aquatic ecosystem. Water Res 105:138–146

    Article  CAS  Google Scholar 

  • Schneiderheinze JM, Armstrong DW, Berthod A (1999) Plant and soil enantioselective biodegradation of racemic phenoxyalkanoic herbicides. Chirality 11(4):330–337

    Article  CAS  Google Scholar 

  • Sun M, Liu D, Qiu X, Zhou Q, Shen Z, Wang P, Zhou Z (2014) Acute toxicity, bioactivity, and enantioselective behavior with tissue distribution in rabbits of myclobutanil enantiomers. Chirality 26(12):784–789

    Article  CAS  Google Scholar 

  • Tian Q, Zhou Z, Lv C, Huang Y, Ren L (2010) Simultaneous determination of paclobutrazol and myclobutanil enantiomers in water and soil using enantioselective reversed-phase liquid chromatography. Anal Methods 2(6):617

    Article  CAS  Google Scholar 

  • Wang P, Liu D, Jiang S, Gu X, Zhou Z (2007) The direct chiral separations of fungicide enantiomers on amylopectin based chiral stationary phase by HPLC. Chirality 19(2):114–119

    Article  CAS  Google Scholar 

  • Wang Y, Qiu J, Zhu W, Wang X, Zhang P, Wang D, Zhou Z (2015) Enantioselective metabolism and interference on tryptophan metabolism of myclobutanil in rat hepatocytes. Chirality 27(9):643–649

    Article  Google Scholar 

  • Zhang H, Wang X, Qian M, Wang X, Xu H, Xu M, Wang Q (2011) Residue analysis and degradation studies of fenbuconazole and myclobutanil in strawberry by chiral high-performance liquid chromatography-tandem mass spectrometry. J Agric Food Chem 59(22):12012–12017

    Article  CAS  Google Scholar 

  • Zhang H, Wang X, Zhuang S, Qian M, Jiang K, Wang X, Xu H, Qi P, Wang Q (2012) Enantioselective separation and simultaneous determination of fenarimol and nuarimol in fruits, vegetables, and soil by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 404(6–7):1983–1991

    Article  CAS  Google Scholar 

  • Zhang Q, Hua X, Yang Y, Yin W, Tian M, Shi H, Wang M (2015) Stereoselective degradation of flutriafol and tebuconazole in grape. Environ Sci Pollut Res Int 22(6):4350–4358

    Article  CAS  Google Scholar 

  • Zhang W, Cheng C, Chen L, Di S, Liu C, Diao J, Zhou Z (2016) Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa. Chemosphere 159:50–57

    Article  CAS  Google Scholar 

  • Zhu J, Dai XJ, Fang JJ, Zhu HM (2013) Simultaneous detection and degradation patterns of kresoxim-methyl and trifloxystrobin residues in citrus fruits by HPLC combined with QuEChERS. J Environ Sci Health B 48(6):470–476

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Nature Science Foundation of China (No. 21507114), the Nature Science Foundation of Zhejiang Province, China (LY070002), Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control (2010DS700124-ZZ1602, 2010DS700124-ZM1604), China Agriculture Research System (CARS-29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingrong Qian.

Ethics declarations

The authors declare that they have no competing interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Zhang, L., Zhang, H. et al. Enantioselective degradation of Myclobutanil and Famoxadone in grape. Environ Sci Pollut Res 25, 2718–2725 (2018). https://doi.org/10.1007/s11356-017-0539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0539-4

Keywords

Navigation