Skip to main content
Log in

Sulfide influence on metal behavior in a polluted southern Mediterranean lagoon: implications for management

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The degree of pyritization and degree of trace metal pyritization (DTMP) were investigated in sediments from Ghar El Melh Lagoon (northern Tunisia) in order to study metal deposition. A sediment core and 28 samples were thus taken in summer 2008, and metals and sulfate were analyzed in pore water/pyrite. Acid-volatile sulfide and metals were simultaneously extracted from these two fractions and the role of pyrite in the metal cycling studied. To examine pyrite presence and mineralogical form in sediments, X-ray diffraction of the washed and decarbonated sediment was performed along with scanning electron microscopy. Results showed that pyrite is present in fromboidal and euhedral forms. Thermodynamic calculation highlighted the formation of metallic sulfides and the co-precipitation of metals with iron sulfides. The DTMP increases with depth, indicating that these metals are either sequestered as sulfides or that they co-precipitate with pyrite into the deep sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Added A (2001) Biogeochemical cycles of Org-C, Tot-N and Tot-S in the sediment of the Ghar El Melh Lagoon north of Tunisia. J Mar Syst 77:139–154

    Article  Google Scholar 

  • Added A (2002) Cycles biogéochimiques des sels nutritifs, du fer, du manganèse et du soufre dans les sédiments de deux systèmes côtiers du nord de la Tunisie: lagune de Ghar El Melh et lac nord de Tunis, Université de Tunis El Manar. 266p

  • Added A, Ben Mammou A, Abdeljaoued S (2003) Caractérisation géochimique des sédiments de surface du Golfe de Tunis. Bul Inst Natn Scien Tech Mer de Salammbo 30:135–142

    Google Scholar 

  • Álvarez-Iglesias P, Rubio B (2008) The degree of trace metal pyritization in subtidal sediments of a mariculture area: Application to the assessment of toxic risk. Mar Pollut Bull 56:973–983

    Article  Google Scholar 

  • Álvarez-Iglesias P, Rubio B (2012) Early diagenesis of organic-matter-rich sediments in a ría environment: Organic matter sources, pyrites morphology and limitation of pyritization at depth. Estuar Coast Shelf Sci 100:113–123

    Article  Google Scholar 

  • Arakaki T, Morse JW (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochim Cosmochim Acta 57:3635–3640

    Article  Google Scholar 

  • Ayache JR, Thompson RJ, Flower A, Boujarra F, Rouatbi H, Makina (2009) Environmental characteristics, landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: Merja Zerga (Morocco), Ghar El Melh (Tunisia) and Lake Manzala (Egypt). Hydrobiologia 622:15–43

    Article  CAS  Google Scholar 

  • Ben Ismail S, Sammari C, Gasparini GP, Béranger K, Brahim M, Aleya L (2012) Water masses exchanged through the Channel of Sicily: evidence for the presence of new water masses on the Tunisian side of the channel. Deep-Sea Res I 63:65–81

    Article  Google Scholar 

  • Bender ML, Gagner C (1976) Dissolved copper, nickel and cadmium in the Sargasso Sea. J Mar Res 34:327–339

    CAS  Google Scholar 

  • Berner R (1967) Thermodynamic stability of sedimentary iron sulfides. Am J Sci 265:773–785

    Article  CAS  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48:605–615

    Article  CAS  Google Scholar 

  • Billon G, Ouddane B, Laureyns J, Boughriet A (2001) Chemistry of metal sulfides in anoxic sediments. Phys Chem Chem Phys 3:3586–3592

    Article  CAS  Google Scholar 

  • Boulègue J, Lord CJ, Church TM (1982) Sulfur speciation and associated trace metals (Fe, Cu) in the porewaters of Great marsh, Delaware. Geochim Cosmochim Acta 46:453–464

    Article  Google Scholar 

  • Boyle EA, Sclater F, Edmond JM (1976) On the marine geochemistry of cadmium. Nature 263:42–44

    Article  CAS  Google Scholar 

  • Brown ET, Callonnec LL, German CR (2000) Geochemical cycling of redox-sensitive metals in sediments from lake Malawi: a diagnostic paleotracer for episodic changes in mixing depth. Geochim Cosmochim Acta 64:3515–3525

  • Brüchert V (1998) Early diagenesis of sulfur in estuarine sediments: the role of sedimentary humic and fulvic acids. Geochim Cosmochim Acta 62:1567–1586

    Article  Google Scholar 

  • Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci Rev 35:249–284

    Article  CAS  Google Scholar 

  • Calvert SE, Pederson TF (1993) Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol 113:67–88

    Article  CAS  Google Scholar 

  • Canfield DE, Raiswell R, Westrich J, Reaves C, Berner R (1986) The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem Geol 54:149–155

    Article  CAS  Google Scholar 

  • Chester R (2000) Marine geochemistry. Academic Press, London 506p

    Google Scholar 

  • Clark MW, McConchie DM (2004) Development of acid sulfate soil in sub-aerially disposed dredge spoil at Fisherman Islands, Brisbane, Australia. Aust J Soil Res 42:553–567

    Article  CAS  Google Scholar 

  • Cooper DC, Morse JW (1998) Extractability of metal sulfide minerals in acidic solutions: application to environmental studies of trace metal contamination within anoxic sediments. Environ Sci Technol 32:1076–1078

    Article  CAS  Google Scholar 

  • Davison W (1991) The solubility of iron sulfides in synthetic and natural waters at ambient temperature. Aquat Sci 53:309–329

    Article  Google Scholar 

  • Dhib A, Ben Brahim M, Ziadi B, Akrout F, Turki S, Aleya L (2013) Factors driving the seasonal distribution of planktonic and epiphytic ciliates in a eutrophicated Mediterranean Lagoon. Mar Pollut Bull 74:383–395

    Article  CAS  Google Scholar 

  • Dhib A, Fertouna-Bellakhal M, Turki S, Aleya L (2015) Harmful planktonic and epiphytic microalgae in a Mediterranean lagoon: the contribution of the macrophyte Ruppia cirrhosa to microalgae dissemination. Harmful Algae 45:1–13

    Article  Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101

    Article  Google Scholar 

  • Emerson S, Jahnke R, Heggie D (1984) Sediment-exchange in shallow water estuarine sediments. J Mar Res 42:709–730

    Article  CAS  Google Scholar 

  • Gagnon C, Mucci A, Pelletier E (1995) Anomalous accumulation of acid volatile sulfides (AVS) in a coastal marine sediment, Saguenay Fjord, Canada. Geochim Cosmochim Acta 59:2663–2675

    Article  CAS  Google Scholar 

  • Gobeil C, Macdonald RW, Sundby B (1997) Diagenetic separation of cadmium and manganese in suboxic continental margin sediments. Geochim Cosmochim Acta 61:4647–4654

    Article  CAS  Google Scholar 

  • Heggie D, Kahnd FK (1986) Trace metals in metalliferous sediments, MANOP site M: interfacial pore waters. Earth Planet Sci Lett 80:106–116

    Article  CAS  Google Scholar 

  • Helland A, Torgeir B (2002) Transport and sedimentation of Cu in a microtidal estuary, SE Norway. Mar Pollut Bull 44:149–155

    Article  CAS  Google Scholar 

  • Henneke E, Luther GW III, De Lange GJ, Hoefs J (1997) Sulfur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea. Geochim Cosmochim Acta 61:307–321

    Article  CAS  Google Scholar 

  • Howarth RW (1975) A rapid and precise method for determining sulfate in seawater, estuarine waters and sediment pore waters. Limnol Oceanogr 23:1066–1069

    Article  Google Scholar 

  • Huerta Diaz M, Morse JW (1992) Pyritisation of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56:2681–2702

    Article  CAS  Google Scholar 

  • Huerta Diaz MA, Tessier A, Carignan R (1998) Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Appl Geochem 13:213–233

    Article  CAS  Google Scholar 

  • Huerta-Dıaz MA, Morse JW (1990) A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Mar Chem 29:119–144

    Article  Google Scholar 

  • Kasten S, Jørgensen BB (2000) Sulfate reduction in marine sediments. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 263–282

    Chapter  Google Scholar 

  • Klinkhammer GP (1980) Early diagenesis in sediments from the eastern Equatorial Pacific. II. Pore water metal results. Earth Planet Sci Lett 49:81–101

    Article  CAS  Google Scholar 

  • Klinkhammer D, Heggie DT, Grapham DW (1982) Metal diagenesis in oxic marine sediments. Earth Planet Sci Lett 61:211–219

    Article  CAS  Google Scholar 

  • Knauer GA, Martin JH (1981) Phosphorus–cadmium cycling in Northeast Pacific waters. J Mar Res 39:65–76

    CAS  Google Scholar 

  • Kraal P, Burton ED, Bush RT (2013) Iron monosulfide accumulation and pyrite formation in eutrophic estuarine sediments. Geochim Cosmochim Acta 122:75–88

    Article  CAS  Google Scholar 

  • Kraiem MM, Chouba L, Ramdani M, Ahmed MH, Thompson JR, Flower RJ (2009) The fish fauna of three North African lagoons: specific inventories, ecological status and production. Hydrobiologia 622:133–146

    Article  Google Scholar 

  • Leventhal J, Taylor C (1990) Comparison of methods to determine degree of pyritisation. Geochim Cosmochim Acta 54:2621–2625

    Article  CAS  Google Scholar 

  • Leventhal JS (1995) Carbon-sulfur plots to show diagenetic and epigenetic sulfidation in sediments. Geochim Cosmochim Ac 59:1207–1211

  • Lyons TW, Berner RA (1992) Carbon–sulfur–iron systematics of the uppermost Holocene sediments of the anoxic Black Sea. Chem Geol 99:1–27

    Article  CAS  Google Scholar 

  • Maillot H, Conte B, Briand G, Boullenger C, Bernard D, Valley K (2000) Etude et spéciation des métaux lourds dans les sédiments de la Deûle (Nord France). TSM 12:29–36

    Google Scholar 

  • Middelburg JJ, De Lange GJ, Van Der Weijden CH (1993) Manganese solubility controlling marine porewaters. Geochim Cosmochim Acta 51:759–763

    Article  Google Scholar 

  • Morgan B, Rate AW, Burton ED (2012) Water chemistry and nutrient release during the resuspension of FeS-rich sediments in a eutrophic estuarine system. Sci Total Environ 432:47–56

    Article  CAS  Google Scholar 

  • Morse JW, Luther GW III (1999) Chemical influences on trace metal interactions in anoxic sediments. Geochim Cosmochim Acta 63:3373–3378

    Article  CAS  Google Scholar 

  • Morse J, Millero F, Cornwell J, Rickard D (1987) The chemistry of the hydrogen sulfides and iron sulfides systems in natural waters. Earth-Sci Rev 24:1–42

    Article  CAS  Google Scholar 

  • Nava-Lopez C, Huerta-Dıaz MA (2001) Degree of trace metal pyritization in sediments from the Pacific coast of Baja California, Mexico. Cienc Mar 27:289–309

    Article  CAS  Google Scholar 

  • Nyffler UP, Li YH, Santschi PH (1984) A kinetic approach to describe trace-element distribution between particles and solution in natural aquatic systems. Geochim Cosmochim Acta 48:1513–1522

    Article  Google Scholar 

  • Otero XL, Vidal-Torrado P, Calvo Da Anta RM, Macías F (2005) Trace elements in biodeposits and sediments from a mussel culture in the Ría de Arousa (Galicia, NW spain). Environ Pollut 136:119–134

    Article  CAS  Google Scholar 

  • Oueslati W (2011) Cycles biogéochimiques des métaux lourds dans les sédiments marins de la lagune de Ghar El Melh, Université Tunis-El Manar Tunis. 271 p.

  • Oueslati W, Added A (2011) Echange des métaux lourds à l’interface eau-sédiment dans la lagune de Ghar El Melh. Revue Méditerranéenne de l’Environnement 4:686–695

    Google Scholar 

  • Oueslati W, Added A, Abdeljaoued S (2010a) Vertical profiles of simultaneously extracted metals (SEM) and acid-volatile sulfide in a changed sedimentary environment: Ghar El Melh Lagoon, Tunisia. Soil Sediment Contam 19:696–706

    Article  CAS  Google Scholar 

  • Oueslati W, Added A, Abdeljaoued S (2010b) Geochemical and statistical approaches to evaluation of metal contamination in a changed sedimentary environment: Ghar El Melh Lagoon, Tunisia. Chem Speciat Bioavailab 22:227–240

    Article  CAS  Google Scholar 

  • Oueslati W, Helali MA, Zaaboub N, Added A (2014) Trace metal pore water geochemistry of Ghar El Melh lagoon sediments (Northern Tunisia). Revue Méditerranéenne de l’Environnement 5:728–737

    Google Scholar 

  • Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724

    Article  CAS  Google Scholar 

  • Raiswell R, Buckley F, Berner RA, Anderson TF (1988) Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J Sediment Petrol 58:812–819

    CAS  Google Scholar 

  • Ramsar Bureau (2007) Fiche Descriptive sur les Zones Humides Ramsar (FDR): Ghar El Melh. Ramsar Bureau, Gland

    Google Scholar 

  • Rasmussen EK, Petersen OS, Thompson JR, Flower RJ, Ayache F, Kraiem M, Chouba L (2009) Model analyses of the future water quality of the eutrophicated Ghar El Melh lagoon (Northern Tunisia). Hydrobiologia 622:173–193

    Article  CAS  Google Scholar 

  • Rickard D (1997) Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: the rate equation. Geochim Cosmochim Acta 61:115–134

    Article  CAS  Google Scholar 

  • Rickard D, Luther GW (1997) Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: the mechanism. Geochim Cosmochim Acta 61:135–147

    Article  CAS  Google Scholar 

  • Rosenthal Y, Lam P, Boyle EA, Thomson J (1995) Authigenic cadmium enrichments in suboxic sediments: precipitation and post depositional mobility. Earth Planet Sci Lett 132:99–111

    Article  CAS  Google Scholar 

  • Roychoudhury AN, Kostka JE, Van Cappellen P (2003) Pyritization: a paleoenvironment and redox proxy reevaluated. Estuar Coast Shelf Sci 57:1183–1193

    Article  CAS  Google Scholar 

  • Sabadini-Santos E, Senez TM, Silva TS, Moreira MR, Mendonça-Filho JG, Santelli RE, Crapez MAC (2014) Organic matter and pyritization relationship in recent sediments from a tropical and eutrophic bay. Mar Pollut Bull 89:220–228

    Article  CAS  Google Scholar 

  • Schecher WD, Mcavoy DC (1998) MINEQL+: a chemical equilibrium modeling system; version 4.0 for Windows. Environ Res Softw, Hallowell, Me, USA

  • Shaw TJ, Gieskes JM, Janke RA (1990) Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochim Cosmochim Acta 54:1233–1246

    Article  CAS  Google Scholar 

  • Shili EB, Trabelsi N, Maîz B (2002) Benthic macrophyte communities in the Ghar El Melh lagoon (Northern Tunisia). J Coast Conserv 8:135–140

    Article  Google Scholar 

  • Sternbeck J, Sohlenius G (1997) Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea. Chem Geol 135:55–73

    Article  CAS  Google Scholar 

  • Suits NS, Arthur MA (2000) Sulfur diagenesis and partitioning in Holocene Peru shelf and upper slope sediments. Chem Geol 163:219–234

    Article  CAS  Google Scholar 

  • Szefer P (1991) Interphase and trophic relationships of metals in a southern Baltic ecosystem. Sci Total Environ 101:201–215

    Article  CAS  Google Scholar 

  • Taylor JH, Price NB (1983) The geochemistry of iron and manganese in the waters and sediments of Bolstafjord, S.W. Norway. Estuar Coast Shelf Sci 17:289–309

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace elements. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Thamdrup B, Fossing H, Jørgensen BB (1994) Manganese, iron, and sulfur cycle in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta 23:5115–5129

    Article  Google Scholar 

  • Thomson J, Higgs NC, Jarvis I, Hydes DJ, Colley S, Wilson TRS (1986) The behavior of manganese in Atlantic carbonate sediments. Geochim Cosmochim Acta 50:1807–1818

    Article  CAS  Google Scholar 

  • Thomson J, Higgs NC, Colley S (1996) Diagnostic redistributions of redox-sensitive elements in northeast Atlantic glacial/interglacial transition sediments. Earth Planet Sci Lett 139:365–377

    Article  CAS  Google Scholar 

  • Ward JC (1970) The structure and properties of some iron sulfides. Rev Pure Appl Chem 20:175–206

    CAS  Google Scholar 

  • Welch S, Lyons WB, Kling CA (1990) A co-precipitation technique for determining trace metal concentrations in iron-rich saline solutions. Environ Sci Technol 11:141–144

  • Westerlund SFG, Anderson LG, Hall POJ, Iverfeldt A, Van Der Loeff MMR, Sundby B (1986) Benthic fluxes of cadmium, copper, nickel, zinc and lead in the coastal environment. Geochim Cosmochim Acta 50:1289–1296

    Article  CAS  Google Scholar 

  • Wilkin RT, Barnes HL (1997) Pyrite formation in an anoxic estuarine basin. Am J Sci 297:620–650

    Article  CAS  Google Scholar 

  • Yücel M, Konovalov SK, Moore TS, Janzen C, Luther GW (2010) Sulfur speciation in the upper Black Sea sediments. Chem Geol 269:364–375

    Article  Google Scholar 

  • Zahar Y, Ghorbel A, Albergel J (2008) Impacts of large dams on downstream flow conditions of rivers: aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia). J Hydrol 351:318–330

    Article  Google Scholar 

  • Ziadi B, Dhib A, Turki S, Aleya L (2015) Factors driving the seasonal distribution of zooplankton in a eutrophicated Mediterranean lagoon. Mar Pollut Bull 97:224–233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was made possible by a Franco-Tunisian cooperation project (Chrono-Environment Laboratory, Besançon, France, UMR CNRS 6249; Laboratory of Mineral Resources and the Environment, Faculty of Sciences of Tunis, Tunisia). We would like to thank all concerned for their participation and contributions. We acknowledge the analytical support provided by the following laboratories: Laboratory of Mineral resources and Environment, Faculty of Sciences of Tunis; and Laboratory of Oceanography and Sedimentology, National Institute of Marine Sciences and Technology, Tunis. We especially thank Professor Gert De Lange of Utrecht University, Utrecht, Netherlands, whose fruitful discussions of our results were of great help. We express our appreciation to the editor, Dr. Philippe Garrigues, and to the anonymous reviewers for helping to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Aleya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oueslati, W., Helali, M.A., Zaaboub, N. et al. Sulfide influence on metal behavior in a polluted southern Mediterranean lagoon: implications for management. Environ Sci Pollut Res 25, 2248–2264 (2018). https://doi.org/10.1007/s11356-017-0529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0529-6

Keywords

Navigation