Environmental Science and Pollution Research

, Volume 25, Issue 1, pp 447–458 | Cite as

Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions

  • Vanessa HörmannEmail author
  • Klaus-Reinhard Brenske
  • Christian Ulrichs
Research Article


Three common plant species (Dieffenbachia maculata, Spathiphyllum wallisii, and Asparagus densiflorus) were tested against their capacity to remove the air pollutants toluene (20.0 mg m−3) and 2-ethylhexanol (14.6 mg m−3) under light or under dark in chamber experiments of 48-h duration. Results revealed only limited pollutant filtration capabilities and indicate that aerial plant parts of the tested species are only of limited value for indoor air quality improvement. The removal rate constant ranged for toluene from 3.4 to 5.7 L h−1 m−2 leaf area with no significant differences between plant species or light conditions (light/dark). The values for 2-ethylhexanol were somewhat lower, fluctuating around 2 L h−1 m−2 leaf area for all plant species tested, whereas differences between light and dark were observed for two of the three species. In addition to pollutant removal, CO2 fixation/respiration and transpiration as well as quantum yield were evaluated. These physiological characteristics seem to have no major impact on the VOC removal rate constant. Exposure to toluene or 2-ethylhexanol revealed no or only minor effects on D. maculata and S. wallisii. In contrast, a decrease in quantum yield and CO2 fixation was observed for A. densiflorus when exposed to 2-ethylhexanol or toluene under light, indicating phytotoxic effects in this species.


Ornamental indoor plants Indoor air quality Air purification Volatile organic compounds (VOC) Photosynthesis 



V. H. was funded by the Elsa-Neumann-Foundation, Berlin, Germany. Sara Schaarschmidt is acknowledged for critically reading the manuscript and Winston Beck for English language revision.

Supplementary material

11356_2017_453_MOESM1_ESM.pdf (687 kb)
ESM 1 (PDF 686 kb)
11356_2017_453_MOESM2_ESM.pdf (67 kb)
ESM 2 (PDF 66 kb)
11356_2017_453_MOESM3_ESM.pdf (31 kb)
ESM 3 (PDF 30 kb)


  1. Cape JN (2003a) Effects of airborne volatile organic compounds on plants. Environ Pollut 122:145–157CrossRefGoogle Scholar
  2. Cape JN (2003b) Effects of VOCs on herbaceous plants in an open-top chamber experiment. Environ Pollut 124:341–353. CrossRefGoogle Scholar
  3. Chin J-Y, Godwin C, Parker E et al (2014) Levels and sources of volatile organic compounds in homes of children with asthma. Indoor Air 24:403–415. CrossRefGoogle Scholar
  4. Dela Cruz M, Christensen JH, Thomsen JD, Müller R (2014) Can ornamental potted plants remove volatile organic compounds from indoor air?—a review. Environ Sci Pollut Res 21:13909–13928. CrossRefGoogle Scholar
  5. Destaillats H, Maddalena RL, Singer BC et al (2008) Indoor pollutants emitted by office equipment: a review of reported data and information needs. Atmos Environ 42:1371–1388. CrossRefGoogle Scholar
  6. Giese M, Bauer-Doranth U, Langebartels C, Sandermann H (1994) Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiol 104:1301–1309CrossRefGoogle Scholar
  7. Girman J (1992) Comment on the use of plants as means to control indoor air pollution. In: EPA (United States Environ. Prot. Agency) - NSCEP (National Serv Cent Environ Publ) Accessed 20 Dec 2016
  8. Girman J, Phillips T, Levin H (2009) Critical review: how well do house plants perform as indoor air cleaners? In: Proceedings of healthy buildings. pp 667–672Google Scholar
  9. Guieysse B, Hort C, Platel V et al (2008) Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnol Adv 26:398–410. CrossRefGoogle Scholar
  10. Hanoune B, Nicolas M, Guilhot J, et al (2013) Inefficiency of passive plant-based systems for indoor air cleaning. In: ASHRAE IAQ 2013 conference: environmental health in low-energy buildings. Vancouver, pp 31–35Google Scholar
  11. Jen MS, Hoylman AM, Edwards NT, Walton BT (1995) Experimental method to measure gaseous uptake of 14C-toluene by foliage. Environ Exp Bot 35:389–398CrossRefGoogle Scholar
  12. Keymeulen R, Schamp N, Van Langhove H (1995) Uptake of gaseous toluene in plant leaves: a two compartment model. Chemosphere 31:3961–3975CrossRefGoogle Scholar
  13. Kvesitadze E, Sadunishvili T, Kvesitadze G (2009) Mechanisms of organic contaminants uptake and degradation in plants. World Acad Sci Eng Technol 3:417–427Google Scholar
  14. Levin H (1992) Can house plants solve IAQ problems? Indoor Air Bull 2:1–5CrossRefGoogle Scholar
  15. Liu Y-J, Mu Y-J, Zhu Y-G et al (2007) Which ornamental plant species effectively remove benzene from indoor air? Atmos Environ 41:650–654. CrossRefGoogle Scholar
  16. Llewellyn D, Dixon M (2011) Can plants really improve indoor air quality? In: Young MM (ed) Comprehensive biotechnology, 2nd edn. Elsevier B.V., Oxford, pp 331–338CrossRefGoogle Scholar
  17. Luengas A, Barona A, Hort C et al (2015) A review of indoor air treatment technologies. Rev Environ Sci Biotechnol 14:499–522. CrossRefGoogle Scholar
  18. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. CrossRefGoogle Scholar
  19. Münzenberg U, Weithaas T, Thumulla J (2003) Luftwechsel im Gebäudebestand - Natürlicher Luftwechsel, Fensterlüftung und die Notwendigkeit von Lüftungskonzepten. In: 7. Pilztagungen des VDB, “sicher erkennen - sicher sanieren.” Stuttgart, pp 1–14Google Scholar
  20. Nalli S, Horn OJ, Grochowalski AR et al (2006) Origin of 2-ethylhexanol as a VOC. Environ Pollut 140:181–185. CrossRefGoogle Scholar
  21. Orwell RL, Wood RA, Burchett MD et al (2006) The potted-plant microcosm substantially reduces indoor air VOC pollution: II. Laboratory study. Water Air Soil Pollut 177:59–80. CrossRefGoogle Scholar
  22. Paterson S, Mackay D, Tam D, Shiu WY (1990) Uptake of organic chemicals by plants: a review of processes, correlations and models. Chemosphere 21:297–331. CrossRefGoogle Scholar
  23. Porter JR (1994) Toluene removal from air by Dieffenbachia in a closed environment. Adv Space Res 14:99–103. CrossRefGoogle Scholar
  24. Que Z-L, Wang F-B, Li J-Z, Furuno T (2013) Assessment on emission of volatile organic compounds and formaldehyde from building materials. Compos Part B 49:36–42. CrossRefGoogle Scholar
  25. Sarigiannis DA, Karakitsios SP, Gotti A et al (2011) Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int 37:743–765. CrossRefGoogle Scholar
  26. Schmitz H, Hilgers U, Weidner M (2000) Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytol 147:307–315CrossRefGoogle Scholar
  27. Schulz C, Ullirch D, Pick-Fuß H, et al (2010) Kinder-Umwelt-Survey (KUS) 2003/06: Innenraumluft - Flüchtige organische Verbindungen in der Innenraumluft in Haushalten mit Kindern in DeutschlandGoogle Scholar
  28. Sriprapat W, Thiravetyan P (2013) Phytoremediation of BTEX from indoor air by Zamioculcas zamiifolia. Water Air Soil Pollut 224(1482):1–9. CrossRefGoogle Scholar
  29. Sriprapat W, Boraphech P, Thiravetyan P (2014) Factors affecting xylene-contaminated air removal by the ornamental plant Zamioculcas zamiifolia. Environ Sci Pollut Res 21:2603–2610. CrossRefGoogle Scholar
  30. Ulrichs C, Welke B, Mucha-Pelzer T et al (2008) Effect of solid particulate matter deposits on vegetation—a review. Funct Plant Sci Biotechnol 2:56–62Google Scholar
  31. Umweltbundesamt (2017) Die Richtwerte I und II für Stoffe der Innenraumluft. In: Die Richtwerte I und II für Stoffe der Innenraumlauft. Accessed 8 Jun 2017
  32. Wetzel TA, Doucette WJ (2015) Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs). Chemosphere 122:32–37. CrossRefGoogle Scholar
  33. Wolkoff P, Nielsen GD (2001) Organic compounds in indoor air—their relevance for perceived indoor air quality? Atmos Environ 35:4407–4417. CrossRefGoogle Scholar
  34. Wolverton BC, Wolverton JD (1993) Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. J Mississippi Acad Sci 38:11–15Google Scholar
  35. Xu Z, Wang L, Hou H (2011) Formaldehyde removal by potted plant-soil systems. J Hazard Mater 192:314–318. CrossRefGoogle Scholar
  36. Yang DS, Pennisi SV, Son K-C, Kays SJ (2009) Screening indoor plants for volatile organic pollutant removal efficiency. Hortscience 44:1377–1381Google Scholar
  37. Yoo MH, Kwon YJ, Son K, Kays SJ (2006) Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants. J Am Soc Hortic Sci 131:452–458Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Faculty of Life Sciences, Division Urban Plant EcophysiologyHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Section II 1.3 Indoor Hygiene, Health-Related Environmental ImpactsGerman Environment AgencyBerlinGermany

Personalised recommendations