Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10207–10217 | Cite as

Mosquito oviposition deterrents

  • Essam Abdel-Saalam Shaalan
  • Deon Vahid Canyon
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology


Mosquitoes are well-known vectors of disease and threaten the health of millions of people annually. While synthetic insecticides have been relied on to combat these diseases, insecticide resistance and environmental concerns have directed attention towards novel and more targeted mosquitocides derived from botanicals. Research on the activity of botanical derivatives has focused on mosquito larvae and adults with little attention given to their potential as oviposition deterrents against gravid female mosquitoes. This review explores the influence of chemical and biological factors on deterrence and examines issues relating to environmental persistence and non-target effects. With very few discoveries of new insecticide pathways, the answer to effective mosquito control may well reside within other ancient plant-based organisms that have co-resided and evolved with this ubiquitous pest.


Botanical derivatives Mosquito control Mosquito-borne diseases Plant-based ovideterrents 



The authors wish to express their sincere appreciation to Dr. Giovanni Benelli for inviting them to write this paper, reading the full manuscript, enhancing its accuracy and clarity and providing valuable criticism.

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Daniel K. Inouye Asia Pacific Center for Security Studies, the Department of Defense, or the US Government.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Afify A, Galizia G (2015) Chemosensory cues for mosquito oviposition site selection. J Med Entomol 52(2):120–130CrossRefGoogle Scholar
  2. Ahbirami R, Zuharah WF, Yahaya ZS, Dieng H, Thiagaletchumi M, Nik F, Ahmad AH, Abu Bakar S (2014) Oviposition deterring and oviciding potentials of Ipomoea cairica L. leaf extract against dengue vectors. Trop Biomed 31(3):456–465Google Scholar
  3. Autran ES, Neves IA, da Silvaa CSB, Santosa GKN, da Câmarab CAG, Navarro DMAF (2009) Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresour Technol 100(7):2284–2288CrossRefGoogle Scholar
  4. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805CrossRefGoogle Scholar
  5. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114(9):3201–3212CrossRefGoogle Scholar
  6. Benelli G (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115(1):23–34CrossRefGoogle Scholar
  7. Benelli G, Beier J (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96CrossRefGoogle Scholar
  8. Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115(5):1747–1754CrossRefGoogle Scholar
  9. Benelli G, Romano D (2017) Mosquito vectors of Zika virus. Entomol Generalis.
  10. Benelli G, Conti B, Garreffa R, Nicoletti M (2014) Shedding light on bioactivity of botanical by-products: neem cake compounds deter oviposition of the arbovirus vector Aedes albopictus (Diptera: Culicidae) in the field. Parasitol Res 113(3):933–940CrossRefGoogle Scholar
  11. Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114(1):227–236CrossRefGoogle Scholar
  12. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015b) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114(2):391–397CrossRefGoogle Scholar
  13. Benelli G, Rajeswary M, Govindarajan M (2016a) Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ Sci Pollut Res.
  14. Benelli G, Lo Iacono A, Canale A, Mehlhorn H (2016b) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res 115(6):2131–2137CrossRefGoogle Scholar
  15. Bentley MD, Day JF (1989) Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Entomol 34:401–421CrossRefGoogle Scholar
  16. Brogdon WG, McAllister JC (1998) Insecticide resistance and vector control. Emerg Infect Dis 4(4):23–26CrossRefGoogle Scholar
  17. Canyon DV, Muller R (2013) Oviposition and olfaction responses of Aedes aegypti mosquitoes to insecticides. Trop Biomed 30(4):691–698Google Scholar
  18. Cheah SX, Tay JW, Chan LK, Jaal Z (2013) Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 112(9):3275–3282CrossRefGoogle Scholar
  19. Coria C, Almiron W, Valladares G, Carpinella C, Luduena F, Defago M, Palacios S (2008) Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae). Bioresour Technol 99(8):3066–3070CrossRefGoogle Scholar
  20. D’Mello JP (1997) Handbook of plant and fungal toxicants. CRC, Boca RatonGoogle Scholar
  21. de Lima GPG, de Souza TM, Freire GP, Farias DF, Cunha AP, Ricardo NMPS, de Morais SM, Carvalho AFU (2013) Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res 112(5):1953–1958CrossRefGoogle Scholar
  22. Elango G, Abdul Rahuman A, Bagavan A, Kamaraj C, Abduz Zahir A, Rajakumar G, Marimuthu S, Santhoshkumar T (2010) Studies on effects of indigenous plant extracts on malarial vector, Anopheles subpictus Grassi (Diptera: Culicidae). Trop Biomed 27(2):143–154Google Scholar
  23. El-Gendy NA, Shaalan EA (2012) Oviposition deterrent activity of some volatile oils against the filaria mosquito vector Culex pipiens. J Entomol 9(6):435–441CrossRefGoogle Scholar
  24. Elhag EA (1999) Mosquitocidal and oviposition deterrent effects in medicinal and other plant extract on Culex pipiens L. J King Abdul Aziz Univ 10(1):55–67Google Scholar
  25. Elimam AM, Elmalik KH, Ali FS (2009) Efficacy of leaves extract of Calotropis procera Ait. (Asclepiadaceae) in controlling Anopheles arabiensis and Culex quinquefasciatus mosquitoes. Saudi J Biol Sci 16(2):95–100CrossRefGoogle Scholar
  26. Fatima K, Bashar K, Rahman KMZ, Howlader AJ (2011) Oviposition deterrent activity of some indigenous plant leaf extracts on mosquito Culex quinquefasciatus say (Diptera: Culicidae). Bangladesh J Life Sci 23(1):25–31Google Scholar
  27. Hausen BM, Reichling J, Harkenthal M (1999) Degradation products of monoterpenes are the sensitizing agents in tea tree oil. Am J Contact Derm 10(2):68–77CrossRefGoogle Scholar
  28. Khandagle AJ, Tare VS, Raut KD, Morey RA (2011) Bioactivity of essential oils of Zingiber officinalis and Achyranthes aspera against mosquitoes. Parasitol Res 109(2):339–343CrossRefGoogle Scholar
  29. Kramer WL, Mulla MS (1979) Oviposition attractant and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environ Entomol 8:1111–1117CrossRefGoogle Scholar
  30. Kweka EJ, Lyatuu EE, Mboya MA, Mwang’onde BJ, Mahande AM (2010) Oviposition deterrence induced by Ocimum kilimandscharicum and Ocimum suave extracts to gravid, Anopheles gambiae s.s. (Diptera: Culicidae) in laboratory. J Global Infect Dis 2(3):242–245CrossRefGoogle Scholar
  31. Kydonieus AF (1980) Controlled release technologies: methods, theory, and applications, vol 1 and 2. CRC press, Boca RatonGoogle Scholar
  32. Lindberg CM, Melathopoulos AP, Winston ML (2000) Laboratory evaluation of miticides to control Varroa jacobsoni (Acari: Varroidae), a honey bee (Hymentoptera: Apidae) parasite. J Econ Entomol 93(2):189–198CrossRefGoogle Scholar
  33. Madhiyazhagan P, Murugan K, Kumar AN, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Kumar PM, Suresh U, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Benelli G (2015) Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114(11):4305–4317CrossRefGoogle Scholar
  34. Maheswaran R, Ignacimuthu S (2014) Effect of Polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L. Parasitol Res 113(9):3143–3150CrossRefGoogle Scholar
  35. Mohsen ZH, Jawad ALM, AL-Chalabi BM, AL-Naib A (1990) Biological activity of Callistemon lanceolatus against Culex quinquefasciatus. Fitoterapia 61(3):270–274Google Scholar
  36. Moretti MDL, Sanna-Passino G, Demontis S, Bazzoni E (2002) Essential oil formulations useful as a new tool for insect pest control. AAPS PharmSciTech 3(2):64–74CrossRefGoogle Scholar
  37. Naqqash MN, Gokçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115(4):1363–1373CrossRefGoogle Scholar
  38. Nogueira de MAS, Palmerio M (2001) In: Neem and pheromones: practice oriented results on use and production of plant extracts and pheromones in integrated and biological pest control. First Workshop, Uberaba, Brasil, May 15-16, pp. 46Google Scholar
  39. Ouda NA, Al-Chalabi BM, Al-Charchafchi FMR, Mohsen ZH (1998) Insecticidal and ovicidal effects of the seed extract of Atriplex Canescens against Culex quinquefasciatus. Pharm Biol 36(1):69–71CrossRefGoogle Scholar
  40. Pandey SK, Upadhyay S, Tripathi AK (2009) Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol Res 105(2):507–512CrossRefGoogle Scholar
  41. Pavela R (2014) Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia Pac Entomol 17(3):287–293CrossRefGoogle Scholar
  42. Pavela R (2016) Encapsulation—a convenient way to extend the persistence of the effect of eco-friendly mosquito larvicides. Curr Org Chem 20(25):2674–2680CrossRefGoogle Scholar
  43. Pavela R, Benelli G (2016a) Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors—a review. Exp Parasitol 167:103–108CrossRefGoogle Scholar
  44. Pavela R, Benelli G (2016b) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21(12):1000–1007CrossRefGoogle Scholar
  45. Perera MDB, Hemingway J, Karunaratne SHPP (2008) Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka. Malar J 7:168CrossRefGoogle Scholar
  46. Phasomkusolsil S, Soonwera M (2012) The effects of herbal essential oils on the oviposition deterrent and ovicidal activities of Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Trop Biomed 29(1):138–150Google Scholar
  47. Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SPS (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol 96(16):1749–1757CrossRefGoogle Scholar
  48. Prathibha KP, Raghavendra BS, Vijayan VA (2014) Larvicidal, ovicidal, and oviposition-deterrent activities of four plant extracts against three mosquito species. Environ Sci Pollut Res 21(10):6736–6743CrossRefGoogle Scholar
  49. Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz A, Roni M, Suresh U, Trivedi S, Rehman H, Higuchi A, Nicoletti M, Benelli G (2016) Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci 109:40–51CrossRefGoogle Scholar
  50. Rajeswary M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Zingiber cernuum (Zingiberaceae) essential oil as effective larvicide and oviposition deterrent on six mosquito vectors, with little non-target toxicity on four aquatic mosquito predators. Environ Sci Pollut Res.
  51. Rajkumar S, Jebanesan A (2005) Oviposition deterrent and skin repellent activities of Solanum trilobatum leaf extract against the malaria vector Anopheles stephensi. J Insect Sci 5:15Google Scholar
  52. Rajkumar S, Jebanesan A (2008) Bioactivity of Chenopodium ambrosioides L. (Family. Chenopodiaceae) against the filariasis vector Culex quinquefasciatus Say (Diptera: Culicidae). Can J Pure Appl Sci 2(1):129–132Google Scholar
  53. Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104(2):337–340CrossRefGoogle Scholar
  54. Ramar M, Ignacimuthu S, Paulraj MG (2014) Ovicidal and oviposition response activities of plant volatile oils against Culex quinquefasciatus say. J Entomol Zool Studies 2(4):82–86Google Scholar
  55. Reegan DR, Gandhi MR, Paulraj MG, Ignacimuthu S (2015) Ovicidal and oviposition deterrent activities of medicinal plant extracts against Aedes aegypti L. and Culex quinquefasciatus Say mosquitoes (Diptera: Culicidae). Osong Public Health Res Perspect 6(1):64–69CrossRefGoogle Scholar
  56. Satho T, Dieng H, Ahmad MHI, Ellias SB, Abu Hassan A, Abang F et al (2015) Coffee and its waste repel gravid Aedes albopictus females and inhibit the development of their embryos. Parasit Vectors 8:272CrossRefGoogle Scholar
  57. Seenivasagana T, Vijayaraghavan R (2010) Oviposition pheromones in haematophagous insects. Vitam Horm 83:597–630CrossRefGoogle Scholar
  58. Shaalan EA, Canyon D, Younes MW, Abdel-Wahab H, Mansour AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Inter 31(8):1149–1166CrossRefGoogle Scholar
  59. Singh SP, Mittal PK (2013) Mosquito repellent and oviposition deterrent activities of Solanum nigrum seed extract against malaria vector Anopheles stephensi. Online Inter Interdiscip Res J 3(6):326–333Google Scholar
  60. Singh SP, Mittal PK (2015) Mosquito repellent and oviposition deterrent activities of Laggera aurita plant extract against malaria vector Anopheles stephensi. Entomol Appl Sci Lett 2(1):18–22Google Scholar
  61. Soonwera M (2015) Efficacy of essential oil from Cananga odorata (Lamk.) Hook.F. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say). Parasitol Res 114(12):4531–4543CrossRefGoogle Scholar
  62. Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7(2):210–237Google Scholar
  63. Tawatsin A, Asavadachanukorn P, Thavara U, Wongsinkongman P, Bansidhi J, Boonruad T, Chavalittumrong P, Soonthornchareonnon N, Komalamisra N, Mulla MS (2006) Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae). Southeast Asian J Trop Med Public Health 37(5):915–931Google Scholar
  64. Tennyson S, Ravindran KJ, Eapen A, William SJ (2012) Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 111(6):2295–2299CrossRefGoogle Scholar
  65. Tripathi AK, Upadhyay S, Bhuiyan M, Bhattacharya PR (2009) A review on prospects of essential oils as biopesticide in insect-pest management. J Pharmaco Phytoth 1(5):052–063Google Scholar
  66. Waliwitiya R, Kennedy CJ, Lowenberger CA (2008) Larvicidal and oviposition-altering activity of monoterpenoids, trans-anethole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag Sci 65(3):241–248CrossRefGoogle Scholar
  67. Warikoo R, Kumar S (2014) Oviposition altering and ovicidal efficacy of root extracts of Argemone mexicana against dengue vector, Aedes aegypti (Diptera: Culicidae). J Entomol Zool Stud 2(4):11–17Google Scholar
  68. Warikoo R, Kumar S (2015) Investigation on the oviposition-deterrence and ovicidal potential of the leaf extracts of Argemone mexicana against an Indian strain of dengue vector, Aedes aegypti (Diptera: Culicidae). Appl Res J 1(4):208–215Google Scholar
  69. Warikoo R, Wahab N, Kumar S (2011) Oviposition-altering and ovicidal potentials of five essential oils against female adults of the dengue vector, Aedes aegypti L. Parsitol Res 109(4):1125–1131CrossRefGoogle Scholar
  70. Yadav R, Tyagi V, Tikar SN, Sharma AK, Mendki MJ, Jain AK, Sukumaran D (2014) Differential larval toxicity and oviposition altering activity of some indigenous plant extracts against dengue and chikungunya vector Aedes albopictus. J Arthropod-Borne Dis 8(2):174–185Google Scholar
  71. Yu KX, Wong CL, Ahmad R, Jantan I (2015) Mosquitocidal and oviposition repellent activities of the extracts of seaweed Bryopsis pennata on Aedes aegypti and Aedes albopictus. Molecules 20(8):14082–14102CrossRefGoogle Scholar
  72. Zuharah WF, Ling CJ, Zulkifly N, Fadzly N (2015) Toxicity and sub-lethal effect of endemic plants from family Anacardiaceae on oviposition behavior of Aedes albopictus. Asian Pac J Trop Biomed 5(8):612–618CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Essam Abdel-Saalam Shaalan
    • 1
    • 2
  • Deon Vahid Canyon
    • 3
  1. 1.Biological Sciences Department, College of ScienceKing Faisal UniversityAl-HfoufKingdom of Saudi Arabia
  2. 2.Zoology Department, Faculty of ScienceAswan UniversityAswanEgypt
  3. 3.Daniel K. Inouye Asia-Pacific Center for Security StudiesHonoluluUSA

Personalised recommendations