Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 5, pp 4066–4084 | Cite as

In search of a comprehensible set of endpoints for the routine monitoring of neurotoxicity in vertebrates: sensory perception and nerve transmission in zebrafish (Danio rerio) embryos

  • Daniel Stengel
  • Sarah Wahby
  • Thomas BraunbeckEmail author
Effect-related evaluation of anthropogenic trace substances, -concepts for genotoxicity, neurotoxicity and, endocrine effects

Abstract

In order to develop a test battery based on a variety of neurological systems in fish, three sensory systems (vision, olfaction, and lateral line) as well as nerve transmission (acetylcholine esterase) were analyzed in zebrafish (Danio rerio) embryos with respect to their suitability as a model for the screening of neurotoxic trace substances in aquatic ecosystems. As a selection of known or putative neurotoxic compounds, amidotrizoic acid, caffeine, cypermethrin, dichlorvos, 2,4-dinitrotoluene, 2,4-dichlorophenol, 4-nonylphenol, perfluorooctanoic acid, and perfluorooctane sulfonic acid were tested in the fish embryo test (OECD test guideline 236) to determine EC10 values, which were then used as maximum test concentration in subsequent neurotoxicity tests. Whereas inhibition of acetylcholinesterase was investigated biochemically both in vivo and in vitro (ex vivo), the sensory organs were studied in vivo by means of fluorescence microscopy and histopathology in 72- or 96-h-old zebrafish embryos, which are not regarded as protected developmental stages in Europe and thus — at least de jure — represent alternative test methods. Various steps of optimization allowed this neurotoxicity battery to identify neurotoxic potentials for five out of the nine compounds: Cypermethrin and dichlorvos could be shown to specifically modulate acetylcholinesterase activity; dichlorvos, 2,4-dichlorophenol, 4-nonylphenol, and perfluorooctane sulfonic acid led to a degeneration of neuromasts, whereas both vision and olfaction proved quite resistant to concentrations ≤ EC10 of all of the model neurotoxicants tested. Comparison of neurotoxic effects on acetylcholinesterase activity following in vivo and in vitro (ex vivo) exposure to cypermethrin provided hints to a specific enzyme-modulating activity of pyrethroid compounds. Enhancement of the neuromast assay by applying a simultaneous double-staining procedure and implementing a 4-scale scoring system (Stengel et al. 2017) led to reduced variability of results and better statistical resolution and allowed to differentiate location-dependent effects in single neuromasts. Since acetylcholinesterase inhibition and neuromast degeneration can be analyzed in 72- and 96-h-old zebrafish embryos exposed to neurotoxicants according to the standard protocol of the fish embryo toxicity test (OECD TG 236), the fish embryo toxicity test can be enhanced to serve as a sensitive neurotoxicity screening test in non-protected stages of vertebrates.

Keywords

Neurotoxicity Fish embryo test Zebrafish Acetylcholinesterase Neuromasts Ototoxicity Vision Retina Olfaction HRIV concept 

Notes

Funding information

The authors gratefully acknowledge the financial support of the project Tox-Box (“A holistic approach towards a harmonized testing strategy for exposure- and hazard-based risk management of anthropogenic trace substances in drinking water to secure long-term drinking water supplies”) by the German Federal Ministry of Education and Research (BMBF) under grant no. 02WRS1282G within the RiSKWa funding scheme (“Risk management of emerging compounds and pathogens in the water cycle”), which is a constitutive part of the BMBF action plan NaWaM (“Sustainable water management”) and integrated into the BMBF framework program FONA (“Research for sustainable development”). The excellent collaboration within the Tox-Box project, especially with the team led by Dr. Tamara Grummt at the Federal Environment Agency at Bad Elster (Germany), is greatly acknowledged.

References

  1. Arora S, Balotra S, Pandey G, Kumar A (2017) Binary combinations of organophosphorus and synthetic pyrethroids are more potent acetylcholinesterase inhibitors than organophosphorus and carbamate mixtures: an in vitro assessment. Toxicol Lett 268:8–16CrossRefGoogle Scholar
  2. Assis CR, Amaral IP, Castro PF, Carvalho LB, Bezerra RS (2007) Effect of dichlorvos on the acetylcholinesterase from tambaqui (Colossoma macropomum) brain. Environ Toxicol Chem 26:1451–1453CrossRefGoogle Scholar
  3. Assis CR, Linhares AG, Oliveira VM, Franca RC, Carvalho EV, Bezerra RS, de Carvalho LB (2012) Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Sci Total Environ 441:141–150CrossRefGoogle Scholar
  4. Bachmann J 2002 Entwicklung und Erprobung eines Teratogenitäts-Screening Testes mit Embryonen des Zebrabärblings Danio rerio, Dresden Techn. Univ. http://nbn-resolving.de/urn:nbn:de:swb:14-1034346530531-90116, 214 pp
  5. Baldwin DH, Sandahl JF, Labenia JS, Scholz NL (2003) Sublethal effects of copper on coho salmon: impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system. Environ Toxicol Chem 22:2266–2274CrossRefGoogle Scholar
  6. Baldwin DH, Tatara CP, Scholz NL (2011) Copper-induced olfactory toxicity in salmon and steelhead: extrapolation across species and rearing environments. Aquat Toxicol 101:295–297CrossRefGoogle Scholar
  7. Beauvais SL, Jones SB, Parris JT, Brewer SK, Little EE (2001) Cholinergic and behavioral neurotoxicity of carbaryl and cadmium to larval rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 49:84–90CrossRefGoogle Scholar
  8. Belanger SE, Rawlings JM, Carr G (2013) Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals. Environ Toxicol Chem 32:1768–1783CrossRefGoogle Scholar
  9. Bettini S, Ciani F, Franceschini V (2006) Cell proliferation and growth-associated protein 43 expression in the olfactory epithelium in Poecilia reticulata after copper solution exposure. Eur J Histochem 50:141–146Google Scholar
  10. Bleckmann H, Zelick R (2009) Lateral line system of fish. Integr Zool 4:13–25CrossRefGoogle Scholar
  11. Bonansea RI, Wunderlin DA, Amé MV (2016) Behavioral swimming effects and acetylcholinesterase activity changes in Jenynsia multidentata exposed to chlorpyrifos and cypermethrin individually and in mixtures. Ecotoxicol Environ Saf 129:311–319CrossRefGoogle Scholar
  12. Braubach OR, Fine A, Croll RP (2012) Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish (Danio rerio). J Comp Neurol 520:2317–2339CrossRefGoogle Scholar
  13. Braunbeck T (1992) Umweltcytologie – zelluläre Reaktionen zum Nachweis einer Schadstoffbelastung von Organismen. Ruperto Carola 85:61–85Google Scholar
  14. Braunbeck T (1998) Cytological alterations in fish hepatocytes—in vivo and in vitro biomarkers of environmental contamination. In: Braunbeck T, Hinton DE, Streit B (eds) Fish ecotoxicology. Experientia, Suppl. Ser. Birkhäuser, Basel, pp 61–140CrossRefGoogle Scholar
  15. Braunbeck T, Lammer E, Leist E, Rudolf M (2005) Towards an alternative for the acute fish LC50 test in chemical assessment: the zebrafish (Danio rerio) embryo toxicity test—an update. ALTEX 22:87–102Google Scholar
  16. Braunbeck T, Kais B, Lammer E, Otte J, Schneider K, Stengel D, Strecker R (2015) The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res 22:16247–16261CrossRefGoogle Scholar
  17. Buck LM, Winter MJ, Redfern WS, Whitfield TT (2012) Ototoxin-induced cellular damage in neuromasts disrupts lateral line function in larval zebrafish. Hear Res 284:67–81CrossRefGoogle Scholar
  18. Byrd CA, Brunjes PC (1995) Organization of the olfactory system in the adult zebrafish: histological, immunohistochemical, and quantitative analysis. J Comp Neurol 358:247–259CrossRefGoogle Scholar
  19. Casida JE, Gammon DW, Glickman AH, Lawrence LJ (1983) Mechanisms of selective action of pyrethroid insecticides. Ann Rev Pharmacol Toxicol 23:413–438CrossRefGoogle Scholar
  20. Chandrasekar G, Arner A, Kitambi SS, Dahlman-Wright K, Lendahl MA (2011) Developmental toxicity of the environmental pollutant 4-nonylphenol in zebrafish. Neurotoxicol Teratol 33:752–764CrossRefGoogle Scholar
  21. Chen J, Huang C, Zheng L, Simonich M, Bai C, Tanguay R, Dong Q (2011) Trimethyltin chloride (TMT) neurobehavioral toxicity in embryonic zebrafish. Neurotoxicol Teratol 33:721–726CrossRefGoogle Scholar
  22. Chen C, Wang Y, Zhao X, Wang Q, Qian Y (2014) The combined toxicity assessment of carp (Cyprinus carpio) acetylcholinesterase activity by binary mixtures of chlorpyrifos and four other insecticides. Ecotoxicology 23:221–228CrossRefGoogle Scholar
  23. Coffin AB, Reinhart KE, Owens KN, Raible DW, Rubel EW (2009) Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line. Hear Res 253:42–51CrossRefGoogle Scholar
  24. Coffin AB, Ou H, Owens KN, Santos F, Simon JA, Rubel EW, Raible DW (2010) Chemical screening for hair cell loss and protection in the zebrafish lateral line. Zebrafish 7:3–11CrossRefGoogle Scholar
  25. Cowden J, Padnos B, Hunter D, Mac Phail R, Jensen K, Padilla S (2012) Developmental exposure to valproate and ethanol alters locomotor activity and retino-tectal projection area in zebrafish embryos. Reprod Toxicol 33:165–173CrossRefGoogle Scholar
  26. Das BK, Mukherjee SC (2003) Toxicity of cypermethrin in Labeo rohita fingerlings: biochemical, enzymatic and haematological consequences. Comp Biochem Physiol 134C:109–121Google Scholar
  27. de Esch C, Slieker R, Wolterbeek APM, Woutersen RA, de Groot D (2012) Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotox Teratol 34:545–553CrossRefGoogle Scholar
  28. Di Paolo C, Seiler TB, Keiter S, Hu M, Muz M, Brack W, Hollert H (2015) The value of zebrafish as an integrative model in effect-directed analysis—a review. Environ Sci Eur 27:8.  https://doi.org/10.1186/s12302-015-0040-y CrossRefGoogle Scholar
  29. Dieter HH (2003) Kommentar zur Bewertung der Anwesenheit nicht oder nur teilbewertbarer Stoffe im Trinkwasser aus gesundheitlicher Sicht. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 46:245–248CrossRefGoogle Scholar
  30. Dishaw LV, Hunter DL, Padnos B, Padilla S, Stapleton HM (2014) Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Danio rerio). Toxicol Sci 142:445–454CrossRefGoogle Scholar
  31. Doving KB, Lastein S (2009) The alarm reaction in fishes—odorants, modulations of responses, neural pathways. Ann N Y Acad Sci 1170:413–423CrossRefGoogle Scholar
  32. Driessen M, Kienhuis AS, Pennings JLA, Pronk TE, van de Brandhof E-J, Roodbergen M, Spaink HP, van de Water B, van der Ven LTM (2013) Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling. Arch Toxicol 87:807–823CrossRefGoogle Scholar
  33. Easter JSS, Nicola GN (1996) The development of vision in the zebrafish (Danio rerio). Dev Biol 180:646–663CrossRefGoogle Scholar
  34. Eddins D, Cerutti D, Williams P, Linney E, Levin ED (2010) Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotox Teratol 32:99–108CrossRefGoogle Scholar
  35. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefGoogle Scholar
  36. Embry MR, Belanger SE, Braunbeck T, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97:79–87CrossRefGoogle Scholar
  37. EU (2008) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the council. Off J EU L 348/84:14. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32008L0105
  38. EU (2010) Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Off J Eur Lex 276:33–79Google Scholar
  39. Fan Y, Ding S, Ye X, Manyande A, He D, Zhao N, Yang H, Jin X, Liu J, Tian C, Xu S, Ying C (2013) Does preconception paternal exposure to a physiologically relevant level of bisphenol A alter spatial memory in an adult rat? Hormon Behav 64:598–604CrossRefGoogle Scholar
  40. Ferrando S, Gallus L, Gambardella C, Amaroli A, Vallarino M, Tagliafierro G (2011) Immunolocalization of G protein alpha subunits in the olfactory system of Polypterus senegalus (Cladistia, Actinopterygii). Neurosci Lett 499:127–131CrossRefGoogle Scholar
  41. Ferrando S, Gallus L, Gambardella C, Marchesotti E, Ravera S, Franceschini V, Masini MA (2014) Effects of urea on the molecules involved in the olfactory signal transduction: a preliminary study on Danio rerio. Fish Physiol Biochem 40:1793–1800CrossRefGoogle Scholar
  42. Fournie JW, Krol RM, Hawkins WE (2000) Fixation of fish tissues. In: Ostrander GK (ed) The laboratory fish. Academic, San Diego, pp 569–578CrossRefGoogle Scholar
  43. Fox DA, Grandjean P, de Groot D, Paule MG (2012) Developmental origins of adult diseases and neurotoxicity: epidemiological and experimental studies. Neurotoxicology 33:810–816CrossRefGoogle Scholar
  44. Fritzsch B, Beisel KW, Pauley S, Soukup G (2007) Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 51:663–678CrossRefGoogle Scholar
  45. Froehlicher M, Liedtke A, Groh K, Neuhauss SC, Segner H, Eggen RI (2009a) Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae. Dev Biol 330:32–43CrossRefGoogle Scholar
  46. Froehlicher M, Liedtke A, Groha KJ, Neuhauss SCF, Segner H, Eggen RIL (2009b) Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat Toxicol 95:307–319CrossRefGoogle Scholar
  47. Ghysen A, Dambly-Chaudiere C (2004) Development of the zebrafish lateral line. Curr Opin Neurobiol 14:67–73CrossRefGoogle Scholar
  48. Gioda CR, Loro VL, Pretto A, Salbego J, Dressler V, Flores EM (2013) Sublethal zinc and copper exposure affect acetylcholinesterase activity and accumulation in different tissues of Leporinus obtusidens. Bull Environ Contam Toxicol 90:12–16CrossRefGoogle Scholar
  49. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178CrossRefGoogle Scholar
  50. Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13:330–338CrossRefGoogle Scholar
  51. Grummt T, Kuckelkorn J, Bahlmann A, Baumstark-Khan C, Brack W, Braunbeck T, Feles S, Gartiser S, Glatt H, Heinze R, Hellweg C, Hollert H, Junek R, Knauer M, Kneib-Kissinger B, Kramer M, Krauss M, Kuster E, Maletz S, Meinl W, Noman A, Prantl E-M, Rabbow E, Redelstein R, Rettberg P, Schadenboeck W, Schmidt C, Schulze T, Seiler TB, Spitta L, Stengel D, Waldmann P, Eckhardt A (2013) Tox-Box: securing drops of life—an enhanced health-related approach for risk assessment of drinking water in Germany. Environ Sci Eur 25:27 http://www.enveurope.com/content/25/1/27 CrossRefGoogle Scholar
  52. Guilhermino L, Celeste Lopes M, Carvalho AP, Soares AM (1996) Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. Chemosphere 32:727–738CrossRefGoogle Scholar
  53. Halder M, Léonard M, Iguchi T, Oris JT, Ryder K, Belanger SE, Braunbeck T, Embry MR, Whale G, Norberg-King T, Lillicrap A (2010) Regulatory aspects on the use of fish embryos in environmental toxicology. Integr Environ Assess Manag 6:484–491CrossRefGoogle Scholar
  54. Hansen A, Zeiske E (1998) The peripheral olfactory organ of the zebrafish, Danio rerio: an ultrastructural study. Chem Senses 23:39–48CrossRefGoogle Scholar
  55. Hansen A, Zielinski BS (2005) Diversity in the olfactory epithelium of bony fishes: development, lamellar arrangement, sensory neuron cell types and transduction components. J Neurocytol 34:183–208CrossRefGoogle Scholar
  56. Hansen A, Rolen SH, Anderson K, Morita Y, Caprio J, Finger TE (2003) Correlation between olfactory receptor cell type and function in the channel catfish. J Neurosci 23:9328–9339Google Scholar
  57. Hara TJ (1975) Olfaction in fish. Prog Neurobiol 5:271–335CrossRefGoogle Scholar
  58. Hara TJ (1994) The diversity of chemical stimulation in fish olfaction and gustation. Fish Biol Fish 4:1–35CrossRefGoogle Scholar
  59. Harris JA, Cheng AG, Cunningham LL, MacDonald G, Raible DW, Rubel EW (2003) Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol 4:219–234CrossRefGoogle Scholar
  60. Hayashi L, Sheth M, Young A, Kruger M, Wayman GA, Coffin AB (2015) The effect of the aquatic contaminants bisphenol-A and PCB-95 on the zebrafish lateral line. Neurotoxicology 46:125–136CrossRefGoogle Scholar
  61. Huang L, Zuo Z, Zhang Y, Wu M, Lin JJ, Wang C (2014) Use of toxicogenomics to predict the potential toxic effect of benzo(a)pyrene on zebrafish embryos: ocular developmental toxicity. Chemosphere 108:55–61CrossRefGoogle Scholar
  62. Huckele S, Track T (2013) Risk management of emerging compounds and pathogens in the water cycle (RiSKWa). Environ Sci Eur 25:1 http://www.enveurope.com/content/25/1/1 CrossRefGoogle Scholar
  63. Irons TD, MacPhail RC, Hunter DL, Padilla S (2010) Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 32:84–90CrossRefGoogle Scholar
  64. Jarema KA, Hunter DL, Shaffer RM, Behl M, Padilla S (2015) Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol Teratol 52:194–209CrossRefGoogle Scholar
  65. Johnson AC, Carew E, Sloman KA (2007) The effects of copper on the morphological and functional development of zebrafish embryos. Aquat Toxicol 84:431–438CrossRefGoogle Scholar
  66. Julliard AK, Saucier D, Astic L (1996) Time-course of apoptosis in the olfactory epithelium of rainbow trout exposed to a low copper level. Tissue Cell 28:367–377CrossRefGoogle Scholar
  67. Kais B, Stengel D, Batel A, Braunbeck T (2015) Acetylcholinesterase in zebrafish embryos as a tool to identify neurotoxic effects in sediments. Environ Sci Pollut Res 22:16329–16339CrossRefGoogle Scholar
  68. Kang JJ, Fang HW (1997) Polycyclic aromatic hydrocarbons inhibit the activity of acetylcholinesterase purified from electric eel. Biochem Biophys Res Comm 238:367–369CrossRefGoogle Scholar
  69. Kanungo J, Cuevas E, Ali SF, Paule MG (2014) Zebrafish model in drug safety assessment. Curr Pharm Des 20:5416–5429CrossRefGoogle Scholar
  70. Kienle C, Köhler H-R, Gerhardt A (2009) Behavioural and developmental toxicity of chlorpyrifos and nickel chloride to zebrafish (Danio rerio) embryos and larvae. Ecotox Environ Saf 72:1740–1747CrossRefGoogle Scholar
  71. Kim KT, Zaikova T, Hutchison JE, Tanguay RL (2013) Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol Sci 133:275–288CrossRefGoogle Scholar
  72. Kimmel CB, Sepich DS, Trevarrow B (1988) Development of segmentation in zebrafish. Development 104(Suppl):197–207Google Scholar
  73. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310CrossRefGoogle Scholar
  74. Klüver N, König M, Ortmann J, Massei R, Paschke A, Kuehne R, Scholz S (2015) The fish embryo toxicity test (FET)—identification of compounds with weak toxicity and analysis of behavioral effects to improve prediction of acute toxicity for neurotoxic compounds. Environ Sci Technol 49:7002–7011CrossRefGoogle Scholar
  75. Kokel D, Bryan J, Laggner C, White R, Cheung CYJ, Mateus R, Healey D, Kim S, Werdich lAA, Haggarty SJ, MacRae CA, Shoichet B, Peterson RT (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237CrossRefGoogle Scholar
  76. Küster E (2005) Cholin- and carboxylesterase activities in developing zebrafish embryos (Danio rerio) and their potential use for insecticide hazard assessment. Aquat Toxicol 75:78–95CrossRefGoogle Scholar
  77. Küster E, Altenburger R (2006) Comparison of cholin- and carboxylesterase enzyme inhibition and visible effects in the zebra fish embryo bioassay under short-term paraoxon-methyl. Biomarkers 111:341–343CrossRefGoogle Scholar
  78. Küster E, Altenburger R (2007) Suborganismic and organismic effects of aldicarb and its metabolite aldicarb-sulfoxide to the zebrafish embryo (Danio rerio). Chemosphere 68:751–760CrossRefGoogle Scholar
  79. Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol 149C:196–209Google Scholar
  80. Lee W, Kang CW, CK S, Okubo K, Nagahama Y (2012) Screening estrogenic activity of environmental contaminants and water samples using a transgenic medaka embryo bioassay. Chemosphere 88:945–952CrossRefGoogle Scholar
  81. Linbo TL, Stehr CM, Incardona JP, Scholz NL (2006) Dissolved copper triggers cell death in the peripheral mechanosensory system of larval fish. Environ Toxicol Chem 25:597–603CrossRefGoogle Scholar
  82. Linbo TL, Baldwin DH, McIntyre JK, Scholz NL (2009) Effects of water hardness, alkalinity, and dissolved organic carbon on the toxicity of copper to the lateral line of developing fish. Environ Toxicol Chem 28:1455–1461CrossRefGoogle Scholar
  83. Lindsay SM, Vogt RG (2004) Behavioral responses of newly hatched zebrafish (Danio rerio) to amino acid chemostimulants. Chem Senses 29:93–100CrossRefGoogle Scholar
  84. Linney E, Dobbs-McAuliffe B, Sajadi H, Malek RL (2004) Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol 138(C):351–362Google Scholar
  85. Mecklenburg L, Schraermeyer U (2007) An overview on the toxic morphological changes in the retinal pigment epithelium after systemic compound administration. Toxicol Pathol 35:252–267CrossRefGoogle Scholar
  86. Mela M, Grotzner SR, Legeay A, Mesmer-Dudons N, Massabuau JC, Ventura DF, de Oliveira Ribeiro CA (2012) Morphological evidence of neurotoxicity in retina after methylmercury exposure. Neurotoxicology 33:407–415CrossRefGoogle Scholar
  87. Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233:377–389CrossRefGoogle Scholar
  88. Mishra A, Devi Y (2014) Histopathological alterations in the brain (optic tectum) of the fresh water teleost Channa punctatus in response to acute and subchronic exposure to the pesticide chlorpyrifos. Acta Histochem 116:176–181CrossRefGoogle Scholar
  89. Miyagawa K, Narita M, Narita M, Akama H, Suzuki T (2007) Memory impairment associated with a dysfunction of the hippocampal cholinergic system induced by prenatal and neonatal exposures to bisphenol-A. Neurosci Lett 418:236–241CrossRefGoogle Scholar
  90. Moran DT, Rowley JC 3rd, Aiken GR, Jafek BW (1992) Ultrastructural neurobiology of the olfactory mucosa of the brown trout, Salmo trutta. Microsc Res Tech 23:28–48CrossRefGoogle Scholar
  91. Mwila K, Burton MH, Van Dyk JS, Pletschke BI (2013) The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environ Monitor Assess 185:2315–2327CrossRefGoogle Scholar
  92. Nagel R (2002) DarT: the embryo test with the Zebrafish Danio rerio—a general model in ecotoxicology and toxicology. ALTEX 19(Suppl 1):38–48Google Scholar
  93. Narra MR (2016) Single and cartel effect of pesticides on biochemical and haematological status of Clarias batrachus: a long-term monitoring. Chemosphere 144:966–974CrossRefGoogle Scholar
  94. Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T (2015) Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom (Kyoto) 55:1–16CrossRefGoogle Scholar
  95. Noyes PD, Haggard DE, Gonnerman GD, Tanguay RL (2015) Advanced morphological – behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants. Toxicol Sci 145:177–195CrossRefGoogle Scholar
  96. OECD (2010) Guidance document on the diagnosis of endocrine-related histopathology in fish gonads. OECD Series on Testing and Assessment No. 123. Organization for Economic Cooperation and Development, ParisGoogle Scholar
  97. OECD (2013) OECD guidelines for the testing of chemicals. Section 2: effects on biotic systems test no. 236: fish embryo acute toxicity (FET) test. Organization for Economic Cooperation and Development, ParisGoogle Scholar
  98. Owens KN, Santos F, Roberts B, Linbo T, Coffin AB, Knisely AJ, Simon JA, Rubel EW, Raible DW (2008) Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet 4:e1000020CrossRefGoogle Scholar
  99. Padilla S, Hunter DL, Padnos B, Frady S, MacPhail RC (2011) Assessing locomotor activity in larval zebrafish: influence of extrinsic and intrinsic variables. Neurotox Teratol 33:624–630CrossRefGoogle Scholar
  100. Pal A, He Y, Jekel M, Reinhard M, Gin KY (2014) Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ Int 71:46–62CrossRefGoogle Scholar
  101. Perez J, Domingues I, Monteiro M, Soares AM, Loureiro S (2013) Synergistic effects caused by atrazine and terbuthylazine on chlorpyrifos toxicity to early-life stages of the zebrafish Danio rerio. Environ Sci Pollut Res Int 20:4671–4680CrossRefGoogle Scholar
  102. Postigo C, Barceló D (2015) Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. Sci Total Environ 503-504:32–47CrossRefGoogle Scholar
  103. Raible DW, Kruse GJ (2000) Organization of the lateral line system in embryonic zebrafish. J Comp Neurol 421:189–198CrossRefGoogle Scholar
  104. Reddy AT, Ayyanna K, Yellamma K (1991) Sensitivity of brain cholinesterase to cypermethrin toxicity in freshwater teleost Tilapia mossambica. Biochem Int 23:959–962Google Scholar
  105. Rihel J, Schier AF (2012) Behavioral screening for neuroactive drugs in zebrafish. Dev Neurobiol 72:373–385CrossRefGoogle Scholar
  106. Romeis (2010) Romeis – Mikroskopische Technik. Springer Spektrum Publ, Heidelberg 603 pp Google Scholar
  107. Russom CL, LaLone CA, Villeneuve DL, Ankley GT (2014) Development of an adverse outcome pathway for acetylcholinesterase inhibition leading to acute mortality. Environ Toxicol Chem 33:2157–2169CrossRefGoogle Scholar
  108. Sabaliauskas NA, Foutz CA, Mest JR, Budgeon LR, Sidor AT, Gershenson JA, Joshi SB, Cheng KC (2006) High-throughput zebrafish histology. Methods 39:246–254CrossRefGoogle Scholar
  109. Samanta P, Pal S, Mukherjee AK, Ghosh AR (2014) Biochemical effects of glyphosate based herbicide, Excel Mera 71, on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes. Ecotoxicol Environ Saf 107:120–125CrossRefGoogle Scholar
  110. Sandahl JF, Miyasaka G, Koide N, Ueda H (2006) Olfactory inhibition and recovery in chum salmon (Oncorhynchus keta) following copper exposure. Can J Fish Aquat Sci 63:1840–1847CrossRefGoogle Scholar
  111. Schmitt EA, Dowling JE (1994) Early eye morphogenesis in the zebrafish, Brachydanio rerio. J Comp Neurol 344:532–542CrossRefGoogle Scholar
  112. Schulte C, Nagel R (1994) Testing acute toxicity in the embryo of zebrafish, Brachydanio rerio, as an alternative to the acute fish test: preliminary results. ATLA 22:12–19Google Scholar
  113. Selderslaghs IWT, Van Rompay AR, De Coen W, Witters HE (2009) Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reprod Toxicol 28:308–332CrossRefGoogle Scholar
  114. Selderslaghs IWT, Blusb R, Witters HE (2012) Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reprod Toxicol 33:142–154CrossRefGoogle Scholar
  115. Selderslaghs I, Hooyberghs J, Blust R, Witters HE (2013) Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicol Teratol 37:44–56CrossRefGoogle Scholar
  116. Silva KC, Assis CR, Oliveira VM, Carvalho LB Jr, Bezerra RS (2013) Kinetic and physicochemical properties of brain acetylcholinesterase from the peacock bass (Cichla ocellaris) and in vitro effect of pesticides and metal ions. Aquat Toxicol 126:191–197CrossRefGoogle Scholar
  117. Sipes NS, Padilla S, Knudsen TB (2011) Zebrafish as an integrative model for twenty-first century toxicity testing. Birth Defects Rev 93C:256–267CrossRefGoogle Scholar
  118. Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59CrossRefGoogle Scholar
  119. Spehr M, Kelliher KR, Li XH, Boehm T, Leinders-Zufall T, Zufall F (2006) Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J Neurosci 26:1961–1970CrossRefGoogle Scholar
  120. Spence R, Jordan WC, Smith C (2006) Genetic analysis of male reproductive success in relation to density in the zebrafish, Danio rerio. Front Zool 3:5.  https://doi.org/10.1186/1742-9994-3-5 CrossRefGoogle Scholar
  121. Stengel D, Zindler F, Braunbeck T (2017) An optimized method to assess ototoxic effects in the lateral line of zebrafish (Danio rerio) embryos. Comp Biochem Physiol 193C:18–29Google Scholar
  122. Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, Braunbeck T (2011) Zebrafish embryos as an alternative to animal experiments. A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:245–153Google Scholar
  123. Tanguay RL, Reimers MJ (2008) Analysis of ethanol developmental toxicity in zebrafish. Methods Mol Biol 447:63–74CrossRefGoogle Scholar
  124. Tierney KB (2011) Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim Biophys Acta 1812:381–389CrossRefGoogle Scholar
  125. Tierney KB, Baldwin DH, Hara TJ, Ross PS, Scholz NL, Kennedy CJ (2010) Olfactory toxicity in fishes. Aquat Toxicol 96:2–26CrossRefGoogle Scholar
  126. Tilton F, La Du JK, Vue M, Alzarban N, Tanguay RL (2006) Dithiocarbamates have a common toxic effect on zebrafish body axis formation. Toxicol Appl Pharmacol 216:55–68CrossRefGoogle Scholar
  127. Tilton FA, Bammler TK, Gallagher EP (2011) Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately or as mixtures. Comp Biochem Physiol 153C:9–16Google Scholar
  128. Ton C, Parng C (2005) The use of zebrafish for assessing ototoxic and otoprotective agents. Hear Res 208:79–88CrossRefGoogle Scholar
  129. Topping DC, Bernard LG, JL O’D, English JC (2007) Hydroquinone: acute and subchronic toxicity studies with emphasis on neurobehavioral and nephrotoxic effects. Food Chem Toxicol 45:70–78CrossRefGoogle Scholar
  130. Triebskorn R, Köhler H-R, Körtje K-H, Negele R-D, Rahmann H, Braunbeck T (1994) Evaluation of bis(tri-n-butyltin)oxide (TBTO) neurotoxicity in rainbow trout (Oncorhynchus mykiss). II. Ultrastructural diagnosis and tin localization by energy filtering transmission electron microscopy (EFTEM). Aquat Toxicol 30:199–213CrossRefGoogle Scholar
  131. Truong L, Harper SL, Tanguay RL (2011) Evaluation of embryotoxicity using the zebrafish model. Methods Mol Biol 691:271–279CrossRefGoogle Scholar
  132. Truong L, Mandrell D, Mandrell R, Simonich M, Tanguay RL (2014) A rapid throughput approach identifies cognitive deficits in adult zebrafish from developmental exposure to polybrominated flame retardants. Neurotoxicology 43:134–142CrossRefGoogle Scholar
  133. UBA (2003) Bewertung der Anwesenheit teil- oder nicht bewertbarer Stoffe im Trinkwasser aus gesundheitlicher Sicht: Empfehlung des Umweltbundesamtes nach Anhörung der Trinkwasserkommission beim Umweltbundesamt. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 46:249–251CrossRefGoogle Scholar
  134. Vani T, Saharan N, Roy S, Ranjan R, Pal A, Siddaiah G, Kumar R (2012) Alteration in haematological and biochemical parameters of Catla catla exposed to sub-lethal concentration of cypermethrin. Fish Physiol Biochem 38:1577–1584CrossRefGoogle Scholar
  135. Wang YP, Hong Q, Qin DN, Kou CZ, Zhang CM, Guo M, Guo XR, Chi X, Tong ML (2012) Effects of embryonic exposure to polychlorinated biphenyls on zebrafish (Danio rerio) retinal development. J Appl Toxicol 32:186–193CrossRefGoogle Scholar
  136. Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard TH (2011) Zebrafish (Danio rerio) embryos as a model for testing proteratogens. Toxicology 281:25–36CrossRefGoogle Scholar
  137. Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard TH (2012) Developmental effects of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish (Danio rerio) embryos. Reprod Toxicol 33:133–141CrossRefGoogle Scholar
  138. Wilson JM, Bunte RM, Carty AJ (2009) Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J Am Ass Laborat Anim Sci 48:785–789Google Scholar
  139. Wixon J (2000) Featured organism: Danio rerio, the zebrafish. Yeast 17:225–231CrossRefGoogle Scholar
  140. Wogram J, Sturm A, Segner H, Liess M (2001) Effects of parathion on acetylcholinesterase, butyrylcholinesterase and carboxylesterase in three-spined stickleback (Gasterosteus aculeatus) following short-term exposure. Environ Toxicol Chem 20:1528–1531CrossRefGoogle Scholar
  141. Yen J, Donerly S, Levin ED, Linney EA (2011) Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish. Neurotox Teratol 33:735–741CrossRefGoogle Scholar
  142. Zellner D, Padnos B, Hunter DL, MAcPhail RC, Padilla S (2011) Rearing conditions differentially affect the locomotor behavior of larval zebrafish, but not their response to valproate-induced developmental neurotoxicity. Neurotox Teratol 33:674–679CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Aquatic Ecology and Toxicology Group, Center for Organismal Studies (COS)University of HeidelbergHeidelbergGermany

Personalised recommendations