Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 21, pp 20497–20509 | Cite as

Nutrient loads in the river mouth of the Río Verde basin in Jalisco, Mexico: how to prevent eutrophication in the future reservoir?

  • Gonzalo Jayme-Torres
  • Anne M. Hansen
Water: From Pollution to Purification
  • 101 Downloads

Abstract

Since nutrients are emitted and mobilized in river basins, causing eutrophication of water bodies, it is important to reduce such emissions and subsequent nutrient loads. Due to processes of attenuation, nutrient loads are reduced during their mobilization in river basins. At the mouth of the Río Verde basin in western Mexico, the El Purgatorio dam is being constructed to supply water to the metropolitan area of the second most populated city in the country, Guadalajara. To analyze situations that allow protecting this future dam from eutrophication, nutrient loads in the mouth of the river basin were determined and their reduction scenarios evaluated by using the NEWS2 (Nutrient Export from Watersheds) model. For this, a nutrient emissions inventory was established and used to model nutrient loads, and modeling results were compared to an analysis of water quality data from two different monitoring sites located on the river. The results suggest that 96% of nitrogen and 99% of phosphorus emissions are attenuated in the watershed. Nutrient loads reaching the mouth of the river basin come mainly from wastewater discharges, followed by livestock activities and different land uses, and loads are higher as emissions are located closer to the mouth of the river basin. To achieve and maintain mesotrophic state of water in the future dam, different nutrient emission reduction scenarios were evaluated. According to these results, the reduction of 90% of the phosphorus loads in wastewater emissions or 75% of the phosphorus loads in wastewater emissions and at least 50% in emissions from livestock activities in the river basin are required.

Keywords

NEWS2 river modeling N and P nutrients Eutrophication Protection of water bodies Scenarios simulation 

Notes

Acknowledgements

The authors wish to thank the Mexican National Science Foundation for the scholarship awarded to GJT (CONACYT 343490). Also, thanks to Emilio Mayorga, University of Washington; Óscar Fuentes-Mariles and Vicente Fuentes-Gea, Mexican National Autonomous University; Carlos Corzo-Juárez, Abel Ruiz-Castro, Marco A. Mijangos-Carro, and Luis Bravo-Inclán, Mexican Institute of Water Technology, for providing information and guidance during the development of this project.

References

  1. Amiotte-Suchet P, Probst JL, Ludwing W (2003) Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob Biogeochem Cycles 17(2):1038.  https://doi.org/10.1029/2002GB001891 CrossRefGoogle Scholar
  2. Aparicio-Mijares FJ (2001) Fundamentals of surface hydrology. Limusa, México City (In Spanish)Google Scholar
  3. APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DCGoogle Scholar
  4. Basnyat P, Teeter LD, Flynn KM, Lockaby BM (1999) Relationships between landscape characteristics and nonpoint source pollution inputs to coastal estuaries. Environ Manag 23(4):539–549CrossRefGoogle Scholar
  5. Benaman J, Armstrong ME, Maidment DR (1996) Modeling of dissolved oxygen in the Houston Ship Channel using WASP5 and Geographic Information Systems. Center for Research in Water Resources. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.367.6561&rep=rep1&type=pdf. Accessed 28 Dec 2016
  6. Beusen AH, Dekker AL, Bouwman AF, Ludwing W, Harrison J (2005) Estimation of global river transport of sediments and associated particulate C, N, and P. Glob Biogeochem Cycle 19(4):GB4S05CrossRefGoogle Scholar
  7. Boesch DF (2002) Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries 25(4):886–900CrossRefGoogle Scholar
  8. Bouwman AF, Beusen AH, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob Biogeochem Cycle 23(4):GB0A04CrossRefGoogle Scholar
  9. Brown WE, Atherton PC (2009) An overview of phosphorus and nitrogen removal strategies. http://des.nh.gov/organization/divisions/water/wmb/rivers/watershed_conference/documents/2009_fri_infastructure_3.pdf. Accessed 28 Dec 2016
  10. CEA (Comisión Estatal del Agua de Jalisco) (2008) Jalisco state comprehensive coverage information system (SIICAEJ). CEA Web. http:/www.ceajalisco.gob.mx/siicaej.php#Escena_1. Accessed 02 Dec 2016 (In Spanish)
  11. CEPIS (Centro Panamericano de Ingeniería Sanitaria y Ciencias Ambientales) (2001) Simplified methodologies for the assessment of eutrophication in warm tropical lakes, Organización Panamericana de la Salud (OPS), Lima (In Spanish)Google Scholar
  12. CONAGUA (Comisión Nacional del Agua) (1994) Technical guidelines for preparation of drinking water and sewage studies and projects. CONAGUA, México City (In Spanish)Google Scholar
  13. CONAGUA (Comisión Nacional del Agua) (2011) National Database of Surface Water (BANDAS). CNA Web. http://www.conagua.gob.mx/CONAGUA07/Contenido/Documentos/Portada%20BANDAS.htm. Accessed 02 Dec 2016 (in Spanish)
  14. Corzo-Juaréz CE (2009) Contamination of the Arcediano basin and proposal for remediation. Dissertation, Universidad Nacional Autónoma de México (in Spanish)Google Scholar
  15. Dumont E, Harrison JA, Kroeze C, Bakker EJ, Seitzinger SP (2005) Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: Results from a spatially explicit, global model. Glob Biogeochem Cycle 19(4):GB4SO2.  https://doi.org/10.1029/2005GB002488 CrossRefGoogle Scholar
  16. FAO (Food and Agriculture Organization of the United Nations) (1992) Wastewater treatment and use in agriculture. FAO Web. http://www.fao.org/docrep/T0551E/t0551e03.htm. Accessed 02 Dec 2016
  17. FMVZ (Facultad de Medicina Veterinaria y Zootecnia) (2009) Bovine encyclopedia. UNAM Web. http://www.fmvz.unam.mx/fmvz/e_bovina/03CriadeBecerras.pdf. Accessed 02 Dec 2016 (In Spanish)
  18. Grizzetti B, Bouraoui F, Aloe A (2012) Changes of nitrogen and phosphorus loads to European seas. Glob Change Biol 18:769–782CrossRefGoogle Scholar
  19. Han H, Bosch N, Allan JD (2011) Spatial and temporal variation in phosphorus budgets for 24 watersheds in the Lake Erie and Lake Michigan basins. Biogeochemistry 102:45–58CrossRefGoogle Scholar
  20. Harrison J, Bouwman AF, Mayorga E, Seitzinger S (2010) Magnitudes and sources of dissolved inorganic phosphorous inputs to surface fresh waters and the coastal zone: a new global model. Glob Biogeochem Cycle 24:GB1003.  https://doi.org/10.1029/2009GB003590 CrossRefGoogle Scholar
  21. Harrison JA, Caraco N, Seitzinger SP (2005a) Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Glob Biogeochem Cycle 19(4). doi: https://doi.org/10.1029/2004GB002357
  22. Harrison JA, Seitzinger SP, Bouwman AF, Caraco N, Beusen AH, Vörösmarty CJ (2005b) Dissolved inorganic phosphorus export to the coastal zone: results from a spatially explicit, global model. Glob Biogeochem Cycle 19:GB4S04Google Scholar
  23. Hong B, Swaney DP, Mörth CM, Smedberg E, Hägg HE, Humborg C, Howarth RW, Bouraoui F (2012) Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecol Model 227:117–135CrossRefGoogle Scholar
  24. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhao-Liang Z (1996) Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139CrossRefGoogle Scholar
  25. IMTA (Instituto Mexicano de Tecnología del Agua) (2005) Eric III Versión 3.2—quick extractor of climatological information. IMTA Web http://www.imta.gob.mx/index.php/productos/software/eric-iii-version-3-2-extractor-rapido-de-informacion-climatolo-detail. Accessed 02 Dec 2016 (In Spanish)
  26. INEGI (Instituto Nacional de Estadística y Geografía) (2008a) Statistical yearbook of the state of Aguascalientes, Edition 2007. INEGI Web. http://www.inegi.gob.mx/est/contenidos/espanol/sistemas/Aee07/estatal/ags/index.htm. Accessed 02 Dec 2016 (In Spanish)
  27. INEGI (Instituto Nacional de Estadística y Geografía) (2008b) Statistical yearbook of the state of Guanajuato, Edition 2007. INEGI Web. http://www.inegi.gob.mx/est/contenidos/espanol/sistemas/Aee07/estatal/ags/index.htm. Accessed 02 Dec 2016 (In Spanish)
  28. INEGI (Instituto Nacional de Estadística y Geografía) (2008c) Statistical yearbook of the state of Jalisco, Edition 2007. INEGI Web. http://www.inegi.gob.mx/est/contenidos/espanol/sistemas/Aee07/estatal/ags/index.htm. Accessed 02 Dec 2016 (In Spanish)
  29. INEGI (Instituto Nacional de Estadística y Geografía) (2008d) Statistical yearbook of the state of San Luis Potosí, Edition 2007. INEGI Web. http://www.inegi.gob.mx/est/contenidos/espanol/sistemas/Aee07/estatal/ags/index.htm. Accessed 02 Dec 2016 (In Spanish)
  30. INEGI (Instituto Nacional de Estadística y Geografía) (2008e) Statistical yearbook of the state of Zacatecas, Edition 2007. INEGI Web. http://www.inegi.gob.mx/est/contenidos/espanol/sistemas/Aee07/estatal/ags/index.htm. Accessed 02 Dec 2016 (In Spanish)
  31. INEGI (Instituto Nacional de Estadística y Geografía) (2013) Population. INEGI Web. http://cuentame.inegi.org.mx/poblacion/rur_urb.aspx?tema=P. Accessed 02 Dec 2016 (In Spanish)
  32. Instituto de Geología (Instituto de Geología Universidad Nacional Autónoma de México) (2000) Geological map of Mexico 5th edition (1992). UNAM Web. http://www.geologia.unam.mx/igl/images/igl/cgm/cgrmmedium.jpg. Accessed 02 Dec 2016 (In Spanish)
  33. IOC (Intergovernmental Oceanographic Commission) (2008) Coastal eutrophication: linking nutrient sources to coastal ecosystem effects and management—the intersection of several UNESCO-IOC programmes related to nutrients. UNESCO Web. http://unesdoc.unesco.org/images/0018/001828/182875e.pdf. Accessed 30 Dec 2016
  34. Jayme-Torres G (2014) Mobilization of nitrogen and phosphorus in Río Verde hydrological basin. Dissertation, Universidad Nacional Autónoma de México (in Spanish)Google Scholar
  35. Jones DD, Sutton AL (2003) Design and operation of livestock waste lagoons. Purdue University Web. http://www.ces.purdue.edu/extmedia/ID/ID-120.html. Accessed 02 Dec
  36. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Koppen-Geiger climate classification updated. Meteorol Z 15(3):259–263CrossRefGoogle Scholar
  37. Kroeze C, Bouwman L, Seitzinger S (2012) Modeling global nutrient export from watersheds. Curr Opin Environ Sustain 4(2):195–202CrossRefGoogle Scholar
  38. Kronvang B, Blicher-Mathiesen G, Wildolf J (2014) Management of nutrient losses in Denmark. https://ec.europa.eu/jrc/sites/jrcsh/files/lb-na-26822-en-n.pdf. Accessed 20 Dec 2016
  39. Leip A, Billen G, Garnier J, Grizzetti B, Lassaletta L, Reis S, Simpson D, Sutton MA, de Vries W, Weiss F, Westhoek H (2015) Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ Res Lett 10:115004.  https://doi.org/10.1088/1748-9326/10/11/115004 CrossRefGoogle Scholar
  40. Lindberg V (2000) Uncertainties and error propagation. Manual on uncertainties, graphing and the vernier caliper, part I. Rochester Institute of Technology, New York, USA. http://www.clayton.edu/Portals/498/Content/Uncertainties%20and%20Error%20Propagation.pdf. Accessed 20 Dec 2016
  41. Mayorga E, Seitzinger SP, Harrison JA, Dumont E, Beusen AH, Bouwman AF, Fekete BM, Kroeze C, Van Drecht G (2010) Global nutrient export from WaterSheds 2 (NEWS2) model development and implementation. Environ Model Softw 25(7):837–853CrossRefGoogle Scholar
  42. McCrackin ML, Harrison JA, Comptom JE (2013) A comparison of NEWS and SPARROW models to understand sources of nitrogen delivered to US coastal areas. Biogeochemistry 114(1–3):281–297CrossRefGoogle Scholar
  43. National Research Council (NRC) (1999) New strategies for America’s watersheds. National Academy Press, WashingtonGoogle Scholar
  44. National Research Council (NRC) (2000) Clean coastal waters: understanding and reducing the effects of nutrient pollution. National Academy Press, WashingtonGoogle Scholar
  45. NOAA (National Oceanic and Atmospheric Administration) (2004) National estuarine eutrophication assessment update: workshop summary and recommendations for development of a long-term monitoring and assessment program. http://ian.umces.edu/neea/pdfs/dldo.pdf. Accessed 30 Dec 2016
  46. OECD (Organization for Economic Co-operation and Development) (1982) Eutrophication of waters: monitoring, assessment and control. OECD, ParisGoogle Scholar
  47. Passy P, Gypens N, Billen G, Garnier J, Thieu V, Rousseau V, Callens J, Parent JY, Lancelot C (2013) A model reconstruction of riverine nutrient fluxes and eutrophication in the Belgian coastal zone since 1984. J Mar Syst 128:106–122CrossRefGoogle Scholar
  48. Passy P, Le Gendre R, Garnier J, Cugier P, Callens J, Paris F, Billen G, Riou P, Romero E (2016) Eutrophication modelling chain for improved management strategies to prevent algal blooms in the Seine. Mar Ecol Prog Ser 543:107–125.  https://doi.org/10.3354/meps11533 CrossRefGoogle Scholar
  49. Qu HJ, Kroeze C (2010) Past and future trends in nutrients export by rivers to the coastal waters of China. Sci Total Environ 408(9):2075–2086CrossRefGoogle Scholar
  50. Qu HJ, Kroeze C (2012) Nutrient export by rivers to the coastal waters of China: management strategies and future trends. Reg Environ Chang 12(1):153–167CrossRefGoogle Scholar
  51. Romero E, Garnier J, Lassaletta L, Billen G, Gendre RL, Riou P, Cugier P (2013) Large-scale patterns of river inputs in southwestern Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone. Biogeochemistry 113:481–505CrossRefGoogle Scholar
  52. Ruiz-Castro CE (2017) Evaluation of phosphorus and nitrogen loads at El Arcediano dam in Jalisco. Dissertation, Universidad Nacional Autónoma de México (in Spanish)Google Scholar
  53. Russell MJ, Weller DE, Jordan TE, Sigwart KJ, Sullivan KJ (2008) Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88:285–304CrossRefGoogle Scholar
  54. Sarpley AN (2000) Agriculture and phosphorus management: the Chesapeake Bay. Lewis Publishers, Boca RatonGoogle Scholar
  55. Seitzinger SP, Harrison JA, Dumont E, Beusen AH, Bouwman AF (2005) Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Glob Biogeochem Cycle 19(4):GB4S01.  https://doi.org/10.1029/2005GB002606 CrossRefGoogle Scholar
  56. Seitzinger S, Mayorga E, Bouwman AF, Kroeze C, Beusen AH, Billen G, Van Drecht G, Dumont E, Fekete BM, GarnierJ HJA (2010) Global river nutrient export: a scenario analysis of past and future trends. Glob Biogeochem Cycle 24(4):GB0A08.  https://doi.org/10.1029/2009GB003587 Google Scholar
  57. SEMARNAT (Secretaria de Medio Ambiente y Recursos Naturales) (2013) Digital geographic information. SEMARNAT Web. http://gisviewer.semarnat.gob.mx/aplicaciones/Atlas2015/meta/vegetacion/vegetacion%20actual%20serie%20V.html. Accessed 02 Dec 2016 (In Spanish)
  58. Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (2011) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  59. Taiganides EP, Sánchez RG (1996) Handbook for the management and control in Mexico of swine wastewater and excrement. Consejo Mexicano de Porcicultura, México City (In Spanish)Google Scholar
  60. USEPA (United States Environmental Protection Agency) (1999) Monitored natural attenuation of petroleum hydrocarbons. USEPA Web. https://nepis.epa.gov/Exe/ZyPDF.cgi/30002379.PDF?Dockey=30002379.PDF. Accessed 26 Dec 2016
  61. USEPA (United States Environmental Protection Agency) (2008) Handbook for developing watershed plans to restore and protect our waters. DIANE Publishing, Washington, DCGoogle Scholar
  62. USGS (United States Geological Survey) (2011) SPARROW surface water-quality modeling. USGS Web. https://water.usgs.gov/nawqa/sparrow/. Accessed 26 Dec 2016
  63. van der Strujik LF, Kroeze C (2010) Future trends in nutrient export to the coastal waters of South America: implications for occurrence of eutrophication. Glob Biogeochem Cycle 24(4):GB0A09.  https://doi.org/10.1029/2009GB003572 Google Scholar
  64. Wang Y, Zheng SJ, Pei LY, Ke L, Peng DC, Xia SQ (2014) Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system. Environ Technol 35(21):2734–2742CrossRefGoogle Scholar
  65. Yasin JA, Kroeze C, Mayorga E (2010) Nutrient export by rivers to the coastal waters of Africa: past and future trends. Glob Biogeochem Cycle 24(4). doi:  https://doi.org/10.1029/2009GB003568GB0A07

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Posgrado en Ingeniería, Universidad Nacional Autónoma de MéxicoCampus Instituto Mexicano de Tecnología del AguaJiutepecMexico
  2. 2.Instituto Mexicano de Tecnología del AguaJiutepecMexico

Personalised recommendations