Skip to main content

Advertisement

Log in

Chemical characteristics and source analysis on ionic composition of rainwater collected in the Carpathians “Cold Pole,” Ciuc basin, Eastern Carpathians, Romania

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A study of precipitation chemistry was conducted for 11 years (01 January 2006–31 December 2016) in the Ciuc basin, Eastern Carpathians, Romania. The studied area is an enclosed basin, also called “the Carpathians cold pole.” All collected samples were analyzed for major cations and anions. HCO3 concentrations were calculated based on the empirical relationship between pH and HCO3 . The multiannual arithmetic mean of pH values was found to be 6.57. The lowest and highest pH values were measured in 2009 and 2013, being 6.57% lower, respectively, 7.57% higher than the multiannual mean. Only 3.31% of the studied rainwater samples indicate acidic character. In descending order, the majority of the samples are as follows: NH4 + >Ca2+ >SO4 2− >Cl >HCO3 >NO3 >Na+ >K+ >Mg2+ >NO2 >H+. Principal component analysis (PCA) showed the NH4 +, Ca2+, and Mg2+ contribution to the neutralization process and their sources. The anthropogenic origin of SO4 2− was supported by the high non-sea-salt fraction (NSSF) (~ 91%). The results of this study suggest that rainwater chemistry is strongly influenced by local natural and anthropogenic sources (agricultural activities) rather than marine sources. The pollutants in rainwater samples were mainly derived from calcareous and dolomitic soil dust and specific local climatic conditions, long-range transport, local industry, and traffic sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed AFM, Singh RP, Elmubarak AH (1990) Chemistry of atmospheric precipitation at the western Arabian Gulf coast. Atmos Environ 24A:2927–2934

    Article  CAS  Google Scholar 

  • Al-Khashman OA (2005) Ionic composition of wet precipitation in the Petra Region, Jordan. Atmos Res 78:1–12

    Article  CAS  Google Scholar 

  • Al-Khashman O (2009) Chemical characteristics of rainwater collected at a western site of Jordan. Atmos Res 91:53–61

    Article  CAS  Google Scholar 

  • Anatolaki C, Tsitouridou R (2009) Relationship between acidity and ionic composition of wet precipitation. A two years study at an urban site, Thessaloniki, Greece. Atmos Res 92:100–113

    Article  CAS  Google Scholar 

  • Baez A, Belmont R, García R, Padilla H, Torres MC (2007) Chemical composition of rainwater at a southwest site of Mexico City, Mexico. Atmos Res 86(1):61–75

  • Balasubramanian R, Victor T, Chun N (2001) Chemical and statistical analysis of precipitation in Singapore. Water, Air and Soil Pollut 130:451–456

    Article  Google Scholar 

  • Behera SN, Sharma M, Aneja VP, Balasubramanian R (2013) Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ Sci Pollut Res 20:8092–8131

    Article  CAS  Google Scholar 

  • Behra P, Sigg L, Stumm W (1989) Dominating influence of NH3 on the oxidation of aqueous SO2: the coupling of NH3 and SO2 in atmospheric water. Atmos Environ 23:2691–2707

    Article  CAS  Google Scholar 

  • Bisht DS, Tiwari S, Srivastava AK, Singh JV, Singh BP, Srivastava MK (2015) High concentration of acidic species in rainwater at Varanasi in the Indo-Gangetic plains, India. Nat Hazards 75:2985–3003

    Article  Google Scholar 

  • Bisht DS, Srivastava AK, Joshi H, Singh N, Naja M, Srivastava MK, Tiwari S (2017) Chemical characterization of rainwater at a high-altitude site “Nainital” in the central Himalayas, India. Environ Sci Pollut Res 24:3959–3969

    Article  CAS  Google Scholar 

  • Bogdan O, Niculescu E (2004) Specific climatic aspects of Giurgeu, Ciuc and Brasov depressions, pedogenetic factors and processes in the temperate climatic zone (Aspecte climatice specific depresiunilor Giurgeu, Ciuc, Brașov, Factori și procese pedogenetice în zona temperatã). 2, Ser. Nouã, Univ. Al. I. Cuza, Iași, p. 3. - (in Romanian)

  • Bray C, Battype W, Aneja V, Tong D, Lee P, Tang Y, Nowak JB (2017) Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in-situ aircraft and satellite measurements from the CalNex2010 campaign. Atmos Environ 163:65–76

    Article  CAS  Google Scholar 

  • Budhavant KB, Rao PSP, Safai PD, Ali K (2011) Influence of local sources on rainwater chemistry over Pune Region, India. Atmos Res 100:121–131

    Article  CAS  Google Scholar 

  • Butler T, Vermeylen F, Lehmann CM, Likens GE, Puchalski M (2016) Increasing ammonia concentration trends in large regions of the USA derived from the NADP/AMoN network. Atmos Environ 146:132–140

    Article  CAS  Google Scholar 

  • Carmichael GR, Ferm M, Thongboonchoo N, Woo JH, Chan LY, Murano K, Viet PH, Mossberg C, Bala R, Boonjawat J, Upatum P, Mohan M, Adhikary SP, Shrestha AB, Pienaar JJ, Brunke EB, Chen T, Jie T, Guoan D, Peng LC, Dhiharto S, Harjanto H, Jose AM, Kimani W, Kirouane A, Lacaux JP, Richard S, Barturen O, Cerda JC, Athayde A, Tavares T, Cotrina JS, Bilici E (2003) Measurements of sulfur dioxide, ozone and ammonia concentrations in Asia, Africa, and South America using passive samplers. Atmos Environ 37:1293–1308

    Article  CAS  Google Scholar 

  • Celle-Jeanton H, Travi Y, Loÿe-Pilot MD, Huneau F, Bertrand G (2009) Rainwater chemistry at a Mediterranean inland station (Avignon, France): local contribution versus long-range supply. Atmos Res 91:118–126

    Article  CAS  Google Scholar 

  • Charlson RJ, Rodhe H (1982) Factors controlling the acidity of natural rainwater. Nature 295:683–685

    Article  CAS  Google Scholar 

  • Chidambaram S, Paramaguru P, Prasanna MV, Karmegam U, Manikandan S (2013) Chemical characteristics of coastal rainwater from Puducherry to Neithavasal. Southeastern coast of India Environ Earth Sci. https://doi.org/10.1007/s12665-013-2976-9

  • Christophensen N, Seip HM (1982) A model for streamwater chemistry at Birkenes, Norway. Water Resources Res 18(4):977–996

    Article  Google Scholar 

  • Clapp LJ, Jenkin ME (2001) Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmos Environ 35:6391–6405

    Article  CAS  Google Scholar 

  • Crutzen PJ (1979) The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu Rev Earth Planet Sci 7:443–472

    Article  CAS  Google Scholar 

  • Gioda A, Mayol-Bracero OL, Scatena FN, Weathers KC, Mateus VL, McDowell WH (2013) Chemical constituents in clouds and rainwater in the Puerto Rican rainforest: potential sources and seasonal drivers. Atmos Environ 68:208–220

    Article  CAS  Google Scholar 

  • Granat L (1972) On the relation between pH and the chemical composition of atmospheric precipitation. Tellus 24:550–560

    Article  CAS  Google Scholar 

  • Guerzoni S, Cristini A, Caboi R, Bolloch OL, Marras I, Rundeddu L (1995) Ionic composition of rainwater and atmospheric aerosols in Sardinia, southern Mediterranean. Water Air Soil Pollut 85(4):2077–2082

  • Hoinaski L, Franco L, Haas R, Martins RF, Lisboa HM (2014) Investigation of rainwater contamination sources in the southern part of Brazil. Environ Technol 35(7):868–881. https://doi.org/10.1080/09593330.2013.854412

    Article  CAS  Google Scholar 

  • Jaffrezo JL, Colin JL (1988) Rain–aerosol coupling in urban area: scavenging ratio measurements and identification of some transfer processes. Atmos Environ 22:929–935

    Article  CAS  Google Scholar 

  • Jenkin ME (2004) Analysis of sources and partitioning of oxidant in the UK—Part 1: the NOX-dependence of annual mean concentrations of nitrogen dioxide and ozone. Atmos Environ 38:5117–5129

    Article  CAS  Google Scholar 

  • Keene W, Pszenny AAP, Galloway JN, Hawley ME (1986) Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J Geophys Res 91(D6):6647–6658

    Article  CAS  Google Scholar 

  • Keresztesi Á, Korodi A, Boga R, Petres S, Ghita G, Ilie M (2017) Chemical characteristics of wet precipitation in the Eastern Carpathians, Romania. Ecoterra 14(2):52–59

    Google Scholar 

  • Khwaja HA, Husain L (1990) Chemical characterization of acid precipitation in Albany, New York. Atmos Environ 24A:1869–1882

    Article  CAS  Google Scholar 

  • Kita I, Sato T, Kase Y, Mitropoulos P (2004) Neutral rains at Athens, Greece: a natural safeguard against acidification of rains. Sci Total Environ 327:285–294

    Article  CAS  Google Scholar 

  • Kristó A (1994) Environmental assessment and pollution sources of the Csík-basins. Csíki Zöld Füzetek 1:6

    Google Scholar 

  • Kulshrestha UC, Saxena A, Kumar N, Kumari KM, Srivastava SS (1998) Chemical composition and association of size differentiated aerosols at a suburban site in semiarid tract of India. J Atmos Chem 29:109–118

    Article  CAS  Google Scholar 

  • Kulshrestha UC, Kulshrestha MJ, Sekar R, Sastry GSR, Vairamani M (2003) Chemical characteristics of rainwater at an urban site of southcentral India. Atmos Environ 37:3019–3026

    Article  CAS  Google Scholar 

  • Kumar R, Rani A, Singh SP, Kumari KM, Srivastava SS (2002) A long-term study on chemical composition of rainwater at Dayalbagh, a suburban site of semi-arid region. J Atmos Chem 41:265–279

    Article  CAS  Google Scholar 

  • Li C, Kang S, Zhang Q, Kaspari S (2007) Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau. Atmos Res 85:351–360

    Article  CAS  Google Scholar 

  • Li YC, Zhang M, Shu M, Ho SSH, Liu ZF, Wang XX, Zhao XQ (2016) Chemical characteristics of rainwater in Sichuan basin, a case study of Ya’an. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-6363

  • Lutgens FK, Tarbuck EJ (2000) Essentials of Geology, 7th ed. Prentice Hall. Ch. 2

  • Mason B (1958) Principles of geochemistry, 2nd edn. Wiley, New York, pp 41–48

    Google Scholar 

  • Matawle JL, Pervez S, Dewangan S, Shrivastava A, Tiwari S, Pant P, Deb MK, Pervez Y (2015) Characterization of PM2.5 source profiles for traffic and dust sources in Raipur, India. Aerosol Air Qual Res 15:2537–2548

    Article  CAS  Google Scholar 

  • Möller D, Schieferdecker H (1985) A relationship between agricultural NH3 emissions ant the atmospheric SO2 content over industrial areas. Atmos Environ 19:695–700

    Article  Google Scholar 

  • Okay C, Akkoyunlu BO, Tayanc M (2002) Composition of wet deposition in Kaynarca, Turkey. Environ Pollut 118:401–410

    Article  CAS  Google Scholar 

  • Parashar DC, Granat L, Kulshrestha UC, Pillai AG, Naik MS, Momin GA, Rao PSP, Safai PD, Khemani L, Naqvi SWA, Narcerkar PV, Thapa KB, Rodhe H (1996) Chemical composition of precipitation in India and Nepal—a preliminary report on an Indo-Swedish project on atmospheric chemistry. Report CM-90, IMI, Stockholm University, Sweden, pp. 1–27

  • Plaisance H, Coddeville P, Guillermo R, Roussel I (1996) Spatial variability and source identification of rural precipitation chemistry in France. Sci Total Environ 180:257–270

    Article  CAS  Google Scholar 

  • Praveen PS, Rao PSP, Safai PD, Devara PCS, Chate DM, Ali K, Momin GA (2007) Study of aerosol transport through precipitation chemistry over Arabian Sea during winter and summer monsoons. Atmos Environ 41:825–836

    Article  CAS  Google Scholar 

  • Pu W, Quan W, Ma Z, Shi X, Zhao X, Zhang L, Wang Z, Wang W (2017) Long-term trend of chemical composition of atmospheric precipitation at a regional background station in Northern China. Sci Total Environ 580:1340–1350. https://doi.org/10.1016/j.scitotenv.2016.12.097

    Article  CAS  Google Scholar 

  • Rao PSP, Tiwari S, Matwale JL, Pervez S, Tunved P, Safai PD, Srivastava AK, Bisht DS, Singh S, Hopke PK (2016) Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmos Environ 146:90–99

    Article  CAS  Google Scholar 

  • Rastogi N, Sarin MM (2005) Chemical characteristics of individual rain events from a semi-arid region in India: three-year study. Atmos Environ 39:3313–3323

    Article  CAS  Google Scholar 

  • Raynor GS, Hayes JV (1982) Concentrations of some ionic species in central Long Island, New York, precipitation in relation to meteorological variables. Water Air Soil Pollut 17:309–335

    Article  CAS  Google Scholar 

  • Rocha FR, Silva JAF, Lago CL, Fornaro A, Gutz IGR (2003) Wet deposition and related atmospheric chemistry in the Sao Paulo metropolis, Brazil: Part 1. Major inorganic ions in rainwater as evaluated by capillary electrophoresis with contactless conductivity detection. Atmos Environ 37:105–115

    Article  CAS  Google Scholar 

  • Roy A, Chatterjee A, Tiwari S, Sarkar C, Das SK, Ghosh SK, Raha S (2016) Precipitation chemistry over urban, rural and high altitude Himalayan stations in eastern India. Atmos Res 181:44–53. https://doi.org/10.1016/j.atmosres.2016.06.005

    Article  CAS  Google Scholar 

  • Sakihama H, Ishiki M, Tokuyama A (2008) Chemical characteristics of precipitation in Okinawa Island, Japan. Atmos Environ 42:2320–2335

    Article  CAS  Google Scholar 

  • Salve PR, Maurya A, Wate SR, Devotta S (2008) Chemical composition of major ions in rainwater. Bull Environ Contam Toxicol 80:242–246

    Article  CAS  Google Scholar 

  • Samara C (2005) Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece. Atmos Environ 39:6430–6443

    Article  CAS  Google Scholar 

  • Samara C, Tsitouridou R (2000) Fine and coarse ionic aerosol components in relation to wet and dry deposition. Water Air Soil Pollut 120:71–88

    Article  CAS  Google Scholar 

  • Samara C, Tsitouridou R, Balafoutis C (1992) Chemical composition of rain in Thessaloniki, Greece, in relation to meteorological conditions. Atmos Environ 26B:359–367

    Article  CAS  Google Scholar 

  • Sanusi A, Wortham H, Millet M, Mirabel P (1996) Chemical composition of rainwater in Eastern France. Atmos Environ 30:59–71

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley and Sons

  • Sequeira R, Lung F (1995) A critical data analysis and interpretation of the pH, ion loadings and electrical conductivity of rainwater from the territory of Hong Kong. Atmos Environ 29:2439–2447

    Article  CAS  Google Scholar 

  • Shreve RN, Brink Jr JA (1977) Chemical process industries, 4th ed. McGraw Hill, New York, pp. 156–178, Ch. 10

  • Singh S, Sharma A, Kulshrestha UC (2016) Relative contributions of NH3, NO2, NH4+ and NO3− to total nitrogen deposition at an agricultural site in the Indo-Gangetic Plain of India. Proceedings of the 2016 International Nitrogen Initiative Conference, “Solutions to improve nitrogen use efficiency for the world”, 4–8 December 2016, Melbourne, Australia. www.ini2016.com

  • Sisteron DL, Shannon JD (1990) A comparison of urban and suburban precipitation chemistry. Atmos Environ 24:389–394

    Article  Google Scholar 

  • Staelens J, Schrijver AN, Avermaet PV, Genouw G, Verhoest N (2005) A comparison of bulk and wet only deposition at two adjacent sites in Melle (Belgium). Atmos Environ 39(1):7–15

  • Szép R, Mátyás L (2014) The role of regional atmospheric stability in high-PM10 concentration episodes in Miercurea Ciuc (Harghita). Carpath J Earth Environ Sci Vol 9(2):241–250

    Google Scholar 

  • Szép R, Keresztes R, Deák GY, Tobă F, Ghimpusian M, Craciun EM (2016) The dry deposition of PM10 and PM2.5 to the vegetation and its health effect in the Ciuc basin. Rev Chim 67(4):408–413

    Google Scholar 

  • Szép R, Keresztes R, Korodi A, Tonk S, Craciun ME (2017) The examination of the effects of relative humidity on the changes of tropospheric ozone concentrations under environmental circumstances in the Ciuc basin, Romania. Rev Chim (Bucharest) 68(4):642–645

    Google Scholar 

  • Tanner RL, Schorran DE (1995) Measurement of gaseous peroxides near the Grand Canyon, implication for summertime visibility impairment from aqueous phase secondary sulfate formation. Atmos Environ 29:1113–1122

    Article  CAS  Google Scholar 

  • Tiwari S, Chate DM, Bisht DS, Srivastava MK, Padmanabhamurty B (2012) Rainwater chemistry in the North Western Himalayan Region, India. Atmos Res 104:128–138

    Article  Google Scholar 

  • Tiwari S, Hopke PK, Thimmaiah D, Dumka UC, Srivastava AK, Bisht DS, Rao PSP, Chate DM, Srivastava MK, Tripathi SN (2016) Nature and sources of ionic species in precipitation across the Indo-Gangetic Plains, India. Aerosol Air Qual Res 16:943–957

    Article  CAS  Google Scholar 

  • Varmuza K, Filmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Taylor & Francis Group, London, New York

    Book  Google Scholar 

  • Wagner GH, Steele KF (1988) Stoichiometry of rain across the USA: evidence of independent neutralization of sulfate and nitrate acidities. Water Air Soil Pollut 39:179–186

    Article  CAS  Google Scholar 

  • Wang H, Han G (2011) Chemical composition of rainwater and anthropogenic influences in Chengdu, Southwest China. Atmos Res 99:190–196

    Article  CAS  Google Scholar 

  • Wu Y, Xu Z, Liu W, Zhao T, Zhang X, Jiang H, Yu C, Zhou L, Zhou X (2016) Chemical compositions of precipitation at three non-urban sites of Hebei Province, North China: influence of terrestrial sources on ionic composition. Atmos Res 181:115–123

    Article  CAS  Google Scholar 

  • Xiao J (2016) Chemical composition and source identification of rainwater constituents at an urban site in Xi’an. Environ Earth Sci 75:209. https://doi.org/10.1007/s12665-015-4997-z

    Article  Google Scholar 

  • Xu Z, Yao W, Liu WJ, Liang CS, Ji J, Zhao T, Zhang X (2015) Chemical composition of rainwater and the acid neutralizing effect at Beijing and Chizhou city, China. Atmos Res 164-165:278–285

    Article  CAS  Google Scholar 

  • Zunckel M, Saizar C, Zarauz J (2003) Rainwater composition in northeast Uruguay. Atmos Environ 37:1601–1611

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Romanian National Meteorological Administration, the National Environmental Protection Agency, and the Environmental Protection Agency Harghita for the permission to use rainwater chemical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Keresztesi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szép, R., Mateescu, E., Nechifor, A.C. et al. Chemical characteristics and source analysis on ionic composition of rainwater collected in the Carpathians “Cold Pole,” Ciuc basin, Eastern Carpathians, Romania. Environ Sci Pollut Res 24, 27288–27302 (2017). https://doi.org/10.1007/s11356-017-0318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0318-2

Keywords

Navigation