Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10504–10514 | Cite as

Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes

  • Kadarkarai Murugan
  • Devakumar Dinesh
  • Devaraj Nataraj
  • Jayapal Subramaniam
  • Pandiyan Amuthavalli
  • Jagannathan Madhavan
  • Aruliah Rajasekar
  • Mariappan Rajan
  • Kulandhaivel Palani Thiruppathi
  • Suresh Kumar
  • Akon Higuchi
  • Marcello Nicoletti
  • Giovanni Benelli
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology

Abstract

The control of filariasis vectors has been enhanced in several areas, but there are main challenges, including increasing resistance to insecticides and lack of cheap and eco-friendly products. The toxicity of iron (Fe0) and iron oxide (Fe2O3) nanoparticles has been scarcely investigated yet. We studied the larvicidal and pupicidal activity of Fe0 and Fe2O3 nanoparticles against Culex quinquefasciatus. Fe0 and Fe2O3 nanoparticles produced by green (using a Ficus natalensis aqueous extract) and chemical nanosynthesis, respectively, were analyzed by UV–Vis spectrophotometry, FT-IR spectroscopy, XRD analysis, SEM, and EDX assays. In larvicidal and pupicidal experiments on Cx. quinquefasciatus, LC50 of Fe0 nanoparticles ranged from 20.9 (I instar larvae) to 43.7 ppm (pupae) and from 4.5 (I) to 22.1 ppm (pupae) for Fe2O3 nanoparticles synthesized chemically. Furthermore, the predation efficiency of the guppy fish, Poecilia reticulata, after a single treatment with sub-lethal doses of Fe0 and Fe2O3 nanoparticles was magnified. Overall, this work provides new insights about the toxicity of Fe0 and Fe2O3 nanoparticles against mosquito vectors; we suggested that green and chemical fabricated nano-iron may be considered to develop novel and effective pesticides.

Keywords

Biological control Iron nanoparticles Lymphatic filariasis Green synthesis Guppy fish 

Notes

Acknowledgements

Four anonymous reviewers improved an earlier version of our work. The authors are grateful to the Professor and Head, Department of Zoology, Bharathiar University for the laboratory facilities providing for this experiment. D. Dinesh is grateful to the Rajiv Gandhi National Fellowship, University Grant Commissions, New Delhi, India for the financial support. Project File No. F1­17.1/2016­17/RGNF­2015­17­SC­TAM­27906/ (SA­III/Website).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. Adriens M (2005) Family medicinal plant gardens in Rwenzori region, 1st edn. Marianum press Ltd., KisubiGoogle Scholar
  2. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81:81–86CrossRefGoogle Scholar
  3. Al-Bawabe A, Friberg SE, Sjoblom J, Farrington G (1998) Sol/Gel Glass with Ferric Nitrate Hydrate Temperature Dependence Transition II high concentration of iron in the glass. J Disp Sci Technol 19:613–636CrossRefGoogle Scholar
  4. Al-Kalifawi E (2015) Green synthesis Of Magnetite Iron Oxide Nanoparticles by Using Al-Abbas's (AS) Hund Fruit (Citrus medica) var Sarcodactylis Swingle Extract and Used in Al-'alqami River Water Treatment. J Nat Sci Res 5:20Google Scholar
  5. AlShebly MM, AlQahtani FS, Govindarajan M, Gopinath K, Vijayan P, Benelli G (2017) Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotoxicol Environ Saf 137:149–157CrossRefGoogle Scholar
  6. Amer A, Mehlhorn H (2006a) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490CrossRefGoogle Scholar
  7. Amer A, Mehlhorn H (2006b) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472CrossRefGoogle Scholar
  8. Anyaele OO, Amusan AAS (2003) Toxicity of hexanoic extracts of Dennettia tripetala (G. Baxer) on larvae of Aedes aegypti (L). Afr J Biomed Res 6:49–53Google Scholar
  9. Arokiyaraj S, Saravanan M, Udaya Prakash NK (2013) Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L leaf extract: an in vitro study. Mat Res Bull 9:3323–3327CrossRefGoogle Scholar
  10. Ashokan AP, Paulpandi M, Dinesh D, Murugan K, Vadivalagan C, Benelli G (2017) Toxicity on dengue mosquito vectors through Myristica fragrans-Synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). J Clust Sci 28:205–226CrossRefGoogle Scholar
  11. Banumathi B, Vaseeharan B, Periyannan R, Prabhu NM, Ramasamy P, Murugan K, Canale A, Benelli G (2017) Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus – a review. Vet Parasitol.  https://doi.org/10.1016/j.vetpar.2017.07.021
  12. Basavegowda N, Magar KBS, Mishra K, Lee YR (2014a) Green fabrication of ferromagnetic Fe3O4 nanoparticles and their novel catalytic applications for the synthesis of biologically interesting benzoxazinone and benzthioxazinone derivatives. New J Chem 38(11):5415–5420CrossRefGoogle Scholar
  13. Basavegowda N, Mishra K, Lee YR (2014b) Sonochemically synthesized ferromagnetic Fe3O4 nanoparticles as a recyclable catalyst for the preparation of pyrrolo [3, 4-c] quinoline-1, 3-dione derivatives. RSC Adv 4(106):61660–61666CrossRefGoogle Scholar
  14. Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B: Biointerfaces 71(1):113–118CrossRefGoogle Scholar
  15. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefGoogle Scholar
  16. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114(9):3201–3212CrossRefGoogle Scholar
  17. Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34CrossRefGoogle Scholar
  18. Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68CrossRefGoogle Scholar
  19. Benelli G (2017) Commentary: data analysis in bionanoscience-issues to watch for. J Clust Sci 28:11-14Google Scholar
  20. Benelli G, Beier J (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96CrossRefGoogle Scholar
  21. Benelli G, Lukehart CM (2017) Special issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28:1–2CrossRefGoogle Scholar
  22. Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754CrossRefGoogle Scholar
  23. Benelli G, Romano D (2017) Mosquito vectors of Zika virus. Entomol Gen.  https://doi.org/10.1127/entomologia/2017/0496
  24. Benelli G, Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S, Khaled JM (2017a) Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol Res 116:1175–1188CrossRefGoogle Scholar
  25. Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A, Youssefi MR, Alarfaj AA, Hwang JS, Higuchi A (2017b) Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. Environ Sci Poll Res.  https://doi.org/10.1007/s11356-017-9752-4
  26. Benelli G, Maggi F, Romano D, Stefanini C, Vaseeharan B, Kumar S, Higuchi A, Alarfaj AA, Mehlhorn H, Canale A (2017c) Nanoparticles as effective acaricides against ticks – a review. Ticks Tick-Borne Dis.  https://doi.org/10.1016/j.ttbdis.2017.08.004
  27. Benelli G, Pavela R, Canale A, Cianfaglione K, Ciaschetti G, Conti F, Nicoletti M, Senthil-Nathan S, Mehlhorn H, Maggi F (2017d) Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: synergistic and antagonistic effects. Parasitol Int 66:166–171CrossRefGoogle Scholar
  28. Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017e) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28:3–10CrossRefGoogle Scholar
  29. Burkill HM (1997) The useful plants of west tropical Africa Royal Botanic Gardens. Kew 4(515):184–185Google Scholar
  30. Chen CJ, Lai HY, Lin CC, Wang JS, Chiang RK (2009) Preparation of monodisperse iron oxide nanoparticles via the synthesis and decomposition of iron fatty acid complexes. Nanoscale Res Lett 4(11):1343–1350CrossRefGoogle Scholar
  31. Chinsembu KC, Hedimbi M (2010) An ethnobotanical survey of plants used to manage HIV/AIDS opportunistic infections in Katima, Caprivi region, Namibia. J Ethnobiol Ethnomed 6:25CrossRefGoogle Scholar
  32. Chung IM, Kim SJ, Yeo MA, Park SW, Moon HI (2011) Immunotoxicity activity of natural furocoumarins from milky sap of Ficus carica L against Aedes aegypti L. Immunopharmacol Immuno Toxicol 33(3):515–518CrossRefGoogle Scholar
  33. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1152CrossRefGoogle Scholar
  34. Farajollahi A, Fonseca DM, Kramer LD, Marm KA (2011) Bird biting mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infec Genet Evol 11:1577–1585CrossRefGoogle Scholar
  35. Farrukh MA, Ali S, Rahman MK (2013) Photodegradation of 2, 4, 6-trinitrophenol catalyzed by Zn/MgO nanoparticles prepared in aqueous-organic medium. Korean J Chem Eng 30:2100–2107CrossRefGoogle Scholar
  36. Finney DJ (1971) Probit analysis. Cambridge University Press, LondonGoogle Scholar
  37. Fu Y, Chen J, Zhang H (2001) Chem Phys Lett 350:491CrossRefGoogle Scholar
  38. Govindarajan M, Benelli G (2016) Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol Res 115:4649–4661CrossRefGoogle Scholar
  39. Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016a) One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101CrossRefGoogle Scholar
  40. Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Khater HF, Benelli G (2016b) Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: a potent eco-friendly tool against malaria and arbovirus vectors. J Photochem Photobiol B Biol 161:482–489CrossRefGoogle Scholar
  41. Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Curzerene, trans-β-elemenone and 훾-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus: toxicity on non-target aquatic predators. Environ Sci Poll Res.  https://doi.org/10.1007/s11356-017-8822-y
  42. Haldar KM, Haldar B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall). Parasitol Res 112:1451–1459CrossRefGoogle Scholar
  43. Hariani PL, Faizal R, Marsi D, Setiabudidaya M (2013) Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int J Environ Sci Dev 4:3Google Scholar
  44. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987CrossRefGoogle Scholar
  45. Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russel DA, Sodeau JR (1995) Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163(2):143–147CrossRefGoogle Scholar
  46. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  47. Iwu MM (1993) Handbook of African medicinal plants. CRC Press, LLC, London, pp 12–57Google Scholar
  48. Jansen O, Angenot L, Tits M, Nicolas JP, De Mol P, Nikiema JB, Frederich M (2010) Evaluation of 13 selected medicinal plants from Burkina Faso for their antiplasmodial properties. J Ethnophamacol 13:143–150CrossRefGoogle Scholar
  49. Joya MR, Baron-Jaimez J, Barba-Ortega J (2013) Preparation and characterization of F e2O3 nanoparticles. J Phys Conf Ser 466(2013):012004.  https://doi.org/10.1088/1742-6596/466/1/012004 CrossRefGoogle Scholar
  50. Krishna B, Dan VGJ (2009) Silver nanoparticles for printable electronics and biological applications. J Mater Res 24:2828–2836CrossRefGoogle Scholar
  51. Kuete V, Ngameni B, Fotso SCC, Kengap TR, Ngadjui BT, Meyer JJM, Lall N, Kuiate JR (2008) Antimicrobial activity of the crude extracts of and compounds from Ficus chlamydocarpa and Ficus cordata (Moraceae). J Ethnopharmacol 120:17–24CrossRefGoogle Scholar
  52. Kuete V, Nana F, Ngameni B, Mabveng TA, Keumedjio F, Ngadjui BT (2009) Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Ficus ovata (Moraceae). J Ethnopharmacol 124:556–561CrossRefGoogle Scholar
  53. Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92Google Scholar
  54. Linthicum KJ, Britch SC, Anyamba A (2016) Rift Valley fever: an emerging mosquito-borne disease. Annu Rev Entomol 61:395–415CrossRefGoogle Scholar
  55. Mahesh Kumar P, Murugan K, Madhiyazhagan P, Kovendan K, Amerasan D, Chandramohan B, Dinesh D, Suresh U, Nicoletti M, Saleh Alsalhi M, Devanesan S, Wei H, Kalimuthu K, Hwang JS, Lo Iacono A, Benelli G (2016) Biosynthesis, characterization and acute toxicity of Berberis tinctoria fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol Res 115:751–759CrossRefGoogle Scholar
  56. Mandal SC, Saha BP, Pa M (2000) Study on antimicrobial activity of Ficus racemosa Linn leaf extract. Phytother Res 14:278–280CrossRefGoogle Scholar
  57. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parischa R, Ajayakumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519CrossRefGoogle Scholar
  58. Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–2253CrossRefGoogle Scholar
  59. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138CrossRefGoogle Scholar
  60. Murugan K, Eugine Venus JS, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015c) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Pollut Res 21:17053–17064CrossRefGoogle Scholar
  61. Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015d) Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res 114:3601–3610CrossRefGoogle Scholar
  62. Murugan K, Sanoopa CP, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, Roni M, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Kumar S, Perumalsamy H, Ahn JY, Benelli G (2015e) Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behavior after exposure at ultra-low doses. Nat Prod Res 30:826–833CrossRefGoogle Scholar
  63. Murugan K, Wei J, Saleh Alsalhi M, Nicoletti M, Paulpandi M, Samidoss CM, Dinesh D, Chandramohan B, Paneerselvam C, Subramaniam J, Vadivalagan C, Wei H, Amuthavalli P, Jaganathan A, Devanesan S, Higuchi A, Kumar S, Aziz AT, Nataraj D, Vaseeharan B, Canale A, Benelli G (2017) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res 116:495–502CrossRefGoogle Scholar
  64. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298CrossRefGoogle Scholar
  65. Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373CrossRefGoogle Scholar
  66. Nathan SS, Chung PG, Murugan K (2006) Combined effect of biopesticides on the digestive enzymatic profiles of Cnaphalocrocis medinalis (Guenée) (the rice leaf folder) (Insecta: Lepidoptera: Pyralidae). Ecotoxicol Environ Saf 64:82–89CrossRefGoogle Scholar
  67. Navaladian S, Viswanathan B, Viswanath RP, Varadarajan TK (2007) Thermal decomposition as route for silver nanoparticles. Nanoscale Res Lett 2:44–48CrossRefGoogle Scholar
  68. Noruzi M, Zare D, Davoodi D (2012) A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 94:84–88CrossRefGoogle Scholar
  69. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181CrossRefGoogle Scholar
  70. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012a) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res 111:555–562CrossRefGoogle Scholar
  71. Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012b) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822CrossRefGoogle Scholar
  72. Pavela R (2015a) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187CrossRefGoogle Scholar
  73. Pavela R (2015b) Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol Res 114:3835–3853CrossRefGoogle Scholar
  74. Pavela R, Benelli G (2016) Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007CrossRefGoogle Scholar
  75. Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Hadda RE, Fan H, Sun Z (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep 4:5294CrossRefGoogle Scholar
  76. Rabe T, Van Staden J (1997) Antibacterial activity of South African plants used for medicinal purposes. J Ethnopharmacol 56:81–87CrossRefGoogle Scholar
  77. Rahuman AA, Bagavan A, Kamaraj C, Saravanan E, Zahir AA, Elango G (2009) Efficacy of larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104:1365–1372CrossRefGoogle Scholar
  78. Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vector. Acta Trop 118:196–203CrossRefGoogle Scholar
  79. Ramanibai R, Velayutham K (2015) Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci 98:82–88CrossRefGoogle Scholar
  80. Raut RW, Niranjan K, Kolekar N, Lakkakula J, Mendhulkar V, Kashid B (2010) Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L) Pierre. Nano Micro Lett 2:106–113CrossRefGoogle Scholar
  81. Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and anti-microbial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L (Solanaceae: Solanales). Acta Trop 128:613–622CrossRefGoogle Scholar
  82. Rodriguez E Wrangham R (1993) Zoopharmacognosy: the use of medicinal plants by animals. In: Phytochemical potential of tropical plants (pp. 89-105). Springer USAGoogle Scholar
  83. Roh, Vali H, Phelps TJ, Moon JW (2006) Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J Nanosci Nanotechnol 6:3517–3520CrossRefGoogle Scholar
  84. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38CrossRefGoogle Scholar
  85. Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K (2010) Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig J Nanomater Biostruct 5(4):887–895Google Scholar
  86. Sakthivadivel M, Saravanan T, Tenzin G, Jayakumar M, Raveen R (2016) Laboratory evaluation of two Meliaceae species as Larvicides against Culex quinquefasciatus Say (Diptera: Culicidae). Vector Biol J 1(2):2–10CrossRefGoogle Scholar
  87. Saxena A, Tripathi RM, Singh RP, Dig J (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Nanomat Bios 5(2):427–432Google Scholar
  88. Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Digest J Nanomat Biostruct 7:1655–1660Google Scholar
  89. Shankar SS, Rai A, Ahmad A, Sastry M (2004a) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502CrossRefGoogle Scholar
  90. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004b) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488CrossRefGoogle Scholar
  91. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009) Preparation and application of magnetic nanoparticles Fe3O4 for water purification. Sep Purif Technol 68:312–319CrossRefGoogle Scholar
  92. Sophie L, Delphine F, Marc P, Alain R, Caroline R, Luce VE, Robert NM (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterization, and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  93. Sreeram KJ, Nidin M, Nair BU (2008) Microwave assisted template synthesis of silver nanoparticles. Bull Mater Sci 31:937–942CrossRefGoogle Scholar
  94. Srinivas NL, Paul MK, Sree Vennela P, Venkata RD (2013) Green synthesis of silver nanoparticles using strawberry leaf extract (Arbutus unedo) and evaluation of its antimicrobial activity a novel study. Int J Nanomat Biostruct 3(3):47–50Google Scholar
  95. Starowicz M, Stypuła B, Banaś J (2006) Electrochemical synthesis of silver nanoparticles. Electrochem Commun 8:227–230CrossRefGoogle Scholar
  96. Stuart BH (2002) Polymer analysis. John Wiley & Sons, LondonGoogle Scholar
  97. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Mahesh Kumar P, Chandramohan B, Suresh U, Rajaganesh R, Saleh AlSalhi M, Devanesan S, Nicoletti M, Canale A, Benelli G (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Poll Res 23:7543–7558CrossRefGoogle Scholar
  98. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325CrossRefGoogle Scholar
  99. Tabuti JR (2007) The uses, local perceptions and ecological status of 16 woody species of Gadumire Sub-county, Uganda. Biodivers Conserv 16:1901–1915CrossRefGoogle Scholar
  100. Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9:950–959CrossRefGoogle Scholar
  101. Tharani K, Nehru LC (2015) Synthesis and characterization of iron oxide nanoparticle by precipitation method. Int J Rec Adv Phys Sci 2:47–50Google Scholar
  102. Titanji VPK, Zofou D, Ngemenya MN (2008) The antimalarial potential of medicinal plants used for the treatment of malaria in Cameroonian folk medicine. AJTCAM 5:302–321Google Scholar
  103. Vadivalagan C, Karthika P, Murugan K, Panneerselvam C, Del Serrone P, Benelli G (2017) Exploring genetic variation in haplotypes of the filariasis vector Culex quinquefasciatus (Diptera: Culicidae) through DNA barcoding. Acta Trop 169:43–50CrossRefGoogle Scholar
  104. Veale DJH, Furman KI, Oliver DW (1992) South African traditional herbal medicines used during pregnancy and childbirth. J Ethnopharmacol 36:185–191CrossRefGoogle Scholar
  105. Velayutham K, Rahuman AA, Rajakumar G, Mohan Roopan S, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6:95–101CrossRefGoogle Scholar
  106. Vicky M, Rodney S, Ajay S, Hardik M (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282–289CrossRefGoogle Scholar
  107. WHO (2002) Lymphatic filariasis, the disease and its control. Technical Report 71 WHO, GenevaGoogle Scholar
  108. WHO (2014) Lymphatic filariasis. Fact sheet no 102Google Scholar
  109. Woodland DW (1997) Contemporary plant systematics, 2nd edn. Press Berien Springs MI, Andrews UniversityGoogle Scholar
  110. Yeary LW, Ji WM, Love LJ, Thompson JR, Rawn CJ, Phelps TJ (2005) Magnetic properties of biosynthesized magnetite nanoparticles. Magn IEEE Trans 41:4384–4389CrossRefGoogle Scholar
  111. Yew YP, Shameli K, Miyake M, Kuwano N, Khairudin ANB, Mohamad SE, Lee KX (2016) Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett 11:276CrossRefGoogle Scholar
  112. Yuvakkumar R, Hong SI (2014) Green synthesis of spinel magnetite iron oxide nanoparticles. Adv Mater Res 1051:39–42CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Kadarkarai Murugan
    • 1
    • 2
  • Devakumar Dinesh
    • 1
  • Devaraj Nataraj
    • 3
  • Jayapal Subramaniam
    • 1
    • 4
  • Pandiyan Amuthavalli
    • 1
  • Jagannathan Madhavan
    • 5
  • Aruliah Rajasekar
    • 6
  • Mariappan Rajan
    • 7
  • Kulandhaivel Palani Thiruppathi
    • 3
  • Suresh Kumar
    • 8
  • Akon Higuchi
    • 9
  • Marcello Nicoletti
    • 10
  • Giovanni Benelli
    • 11
    • 12
  1. 1.Division of Entomology, Department of Zoology, School of Life SciencesBharathiar UniversityCoimbatoreIndia
  2. 2.Department of ZoologyThiruvalluvar UniversityVelloreIndia
  3. 3.Department of PhysicsBharathiar UniversityCoimbatoreIndia
  4. 4.Division of Vector Biology and Control, Department of Zoology, Faculty of ScienceAnnamalai UniversityCuddaloreIndia
  5. 5.Solar Energy Laboratory, Department of ChemistryThiruvalluvar UniversityVelloreIndia
  6. 6.Department of BiotechnologyThiruvalluvar UniversityVelloreIndia
  7. 7.Department of Natural Products Chemistry, School of ChemistryMadurai Kamaraj UniversityMaduraiIndia
  8. 8.Department of Medical Microbiology and ParasitologyUniversiti Putra MalaysiaSerdangMalaysia
  9. 9.Department of Chemical and Materials EngineeringNational Central UniversityTaoyuanTaiwan
  10. 10.Department of Environmental Biology, Sapienza University of Department of Environmental BiologySapienza University of RomeRomeItaly
  11. 11.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  12. 12.The BioRobotics Institute, Scuola Superiore Sant’AnnaPisaItaly

Personalised recommendations