Skip to main content
Log in

In situ remediation of tetrachloroethylene and its intermediates in groundwater using an anaerobic/aerobic permeable reactive barrier

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Tetrachloroethylene (PCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. Its chlorinated degradation by-products remain highly toxic. In this study, an anaerobic/aerobic permeable reactive barrier system consisting of four different functional layers was designed to remediate PCE-contaminated groundwater. The first (oxygen capture) layer maintained the dissolved oxygen (DO) concentration at < 1.35 mg/L in influent supplied to the second (anaerobic) layer. The third (oxygen-releasing) layer maintained DO concentration at > 11.3 mg/L within influent supplied to the fourth (aerobic) layer. The results show that 99% of PCE was removed, mostly within the second layer (anaerobic). Furthermore, the toxic by-products trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) were further degraded by 98, 90, and 92%, respectively, in layer 4 (aerobic). Thus, the designed anaerobic/aerobic permeable reactive barrier system could control both PCE and its degradation by-products, showing great potential as an efficient remediation alternative for the in situ treatment of PCE-contaminated groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PCE:

Tetrachloroethylene

TEC:

Trichloroethylene

DCE:

Dichloroethylene

VC:

Vinyl chloride

ACA:

Activated carbon adsorption

AOP:

Advanced oxidation processes

ZVI:

Zero-valent iron

DO:

Dissolved oxygen

PRB:

Permeable reactive barrier

References

  • Audí-Miró C, Cretnik S, Torrentó C et al (2015) C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site. J Hazard Mater 299:747–754

    Article  CAS  Google Scholar 

  • Azizian MF, Semprini L (2016) Simultaneous anaerobic transformation of tetrachloroethene and carbon tetrachloride in a continuous flow column. J Contam Hydrol 190:58–68

    Article  CAS  Google Scholar 

  • Basu D, Gupta SK (2010) Biodegradation of 1,1,2,2-tetrachloroethane in Upflow Anaerobic Sludge Blanket (UASB) reactor. Bioresour Technol 101:21–25

    Article  CAS  Google Scholar 

  • Brennan RA, Sanford RA, Werth CJ (2006) Biodegradation of tetrachloroethene by chitin fermentation products in a continuous flow column system. J Environ Eng 132:664–673

    Article  CAS  Google Scholar 

  • Flury B, Frommer J, Eggenberger U et al (2009) Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environ Sci Technol 43:6786–6792

    Article  CAS  Google Scholar 

  • Frascari D, Zanaroli G, Danko AS (2015) In situ aerobic cometabolism of chlorinated solvents: a review. J Hazard Mater 283:382–399

    Article  CAS  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92:2355–2388

    Article  CAS  Google Scholar 

  • Kao CM, Chen SC, Liu JK (2001) Development of a biobarrier for the remediation of PCE-contaminated aquifer. Chemosphere 43:1071–1078

    Article  CAS  Google Scholar 

  • Kao CM, Chen SC, Wang JY et al (2003a) Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Res 37:27–38

    Article  CAS  Google Scholar 

  • Kao CM, Chen YL, Chen SC et al (2003b) Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Res 37:4885–4894

    Article  CAS  Google Scholar 

  • Kao CM, Liao HY, Chien CC et al (2016) The change of microbial community from chlorinated solvent-contaminated groundwater after biostimulation using the metagenome analysis. J Hazard Mater 302:144–150

    Article  CAS  Google Scholar 

  • Kim H, Leitch M, Naknakorn B et al (2017) Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand. J Hazard Mater 322:136–144

    Article  CAS  Google Scholar 

  • Kong X, Huang G, Han Z et al (2017) Evaluation of zeolite-supported microscale zero-valent iron as a potential adsorbent for Cd2+ and Pb2+ removal in permeable reactive barriers. Environ Sci Pollut Res 24:13837–13844

    Article  CAS  Google Scholar 

  • Kret E, Kiecak A, Malina G et al (2015) Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies. Environ Sci Pollut Res 22:9877–9888

    Article  CAS  Google Scholar 

  • Kwon K, Shim H, Bae W et al (2016) Simultaneous biodegradation of carbon tetrachloride and trichloroethylene in a coupled anaerobic/aerobic biobarrier. J Hazard Mater 313:60–67

    Article  CAS  Google Scholar 

  • Lien PJ, Yang ZH, Chang YM et al (2016) Enhanced bioremediation of TCE-contaminated groundwater with coexistence of fuel oil: effectiveness and mechanism study. Chem Eng J 289:525–536

    Article  CAS  Google Scholar 

  • Liu SJ, Jiang B, Huang GQ, Li XG (2006) Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier. Water Res 40:3401–3408

    Article  CAS  Google Scholar 

  • Liu SJ, Zhao ZY, Li J et al (2013) An anaerobic two-layer permeable reactive biobarrier for the remediation of nitrate-contaminated groundwater. Water Res 47:5977–5985

    Article  CAS  Google Scholar 

  • Liu N, Ding F, Wang L et al (2016) Coupling of bio-PRB and enclosed in-well aeration system for remediation of nitrobenzene and aniline in groundwater. Environ Sci Pollut Res 23:9972–9983

    Article  CAS  Google Scholar 

  • Maire J, Coyer A, Fatin-Rouge N (2015) Surfactant foam technology for in situ removal of heavy chlorinated compounds-DNAPLs. J Hazard Mater 299:630–638

    Article  CAS  Google Scholar 

  • Miao Z, Gu X, Lu S et al (2015) Mechanism of PCE oxidation by percarbonate in a chelated Fe(II)-based catalyzed system. Chem Eng J 275:53–62

    Article  CAS  Google Scholar 

  • Mihopoulos PG, Sayles GD, Suidan MT et al (2000) Vapor phase treatment of PCE in a soil column by lab-scale anaerobic bioventing. Water Res 34:3231–3237

    Article  CAS  Google Scholar 

  • Mitra S, Gupta SK (2013) Biodegradation of tetrachloroethylene-rich synthetic wastewater in anaerobic hybrid reactor. Desalin Water Treat 51:4506–4513

    Article  CAS  Google Scholar 

  • Obiri-Nyarko F, Grajales-Mesa SJ, Malina G (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111:243–259

    Article  CAS  Google Scholar 

  • Phillips DH, Van Nooten T, Bastiaens L et al (2010) Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ Sci Technol 44:3861–3869

    Article  CAS  Google Scholar 

  • Thomé A, Reginatto C, Cecchin I, Colla LM (2014) Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil. J Environ Eng 140:1–6

    Article  CAS  Google Scholar 

  • Tzovolou DN, Theodoropoulou MA, Blanchet D et al (2015) In situ bioventing of the vadose zone of multi-scale heterogeneous soils. Environ Earth Sci 74:4907–4925

    Article  CAS  Google Scholar 

  • Wen YJ, Yang YS, Ren HJ et al (2015) Chemical-biological hybrid reactive zones and their impact on biodiversity of remediation of the nitrobenzene and aniline contaminated groundwater. Chem Eng J 280:233–240

    Article  CAS  Google Scholar 

  • Wu X, Gu X, Lu S et al (2014) Degradation of trichloroethylene in aqueous solution by persulfate activated with citric acid chelated ferrous ion. Chem Eng J 255:585–592

    Article  CAS  Google Scholar 

  • Xin BP, Wu CH, Wu CH, Lin CW (2013) Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead. J Hazard Mater 244–245:765–772

    Article  CAS  Google Scholar 

  • Yamasaki S, Nomura N, Nakajima T, Uchiyama H (2012) Cultivation-independent identification of candidate dehalorespiring bacteria in tetrachloroethylene degradation. Environ Sci Technol 46:7709–7716

    Article  CAS  Google Scholar 

  • Yu X, Amrhein C, Deshusses MA, Matsumoto MR (2006) Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron. Environ Sci Technol 40:1328–1334

  • Zhang Y, Hwa J (2016) Alternated phenol and trichloroethylene biodegradation in an aerobic granular sludge reactor. 106:1–10

  • Zheng F, Gao B, Sun Y et al (2016) Removal of tetrachloroethylene from homogeneous and heterogeneous porous media: combined effects of surfactant solubilization and oxidant degradation. Chem Eng J 283:595–603

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Tianjin Research Program of Application Foundation and Advanced Technology, Tianjin City, China (key project, no.15JCZDJC40400) and the National Natural Science Foundation of China (No. 21407112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongKui Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yang, Q., Yang, Y. et al. In situ remediation of tetrachloroethylene and its intermediates in groundwater using an anaerobic/aerobic permeable reactive barrier. Environ Sci Pollut Res 24, 26615–26622 (2017). https://doi.org/10.1007/s11356-017-0290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0290-x

Keywords

Navigation