Skip to main content
Log in

Effect of pH on hexavalent and total chromium removal from aqueous solutions by avocado shell using batch and continuous systems

  • Contaminated sites, waste management and green chemistry: New challenges from monitoring to remediation
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Solution pH appears to be the most important regulator of the biosorptive removal of chromium ions from aqueous solutions. This work presents a kinetic study of the effects of solution pH on Cr(VI) and total chromium removal from aqueous solution by Hass avocado shell (HAS) in batch and continuous packed bed column systems. Different Cr(VI) and total chromium removal performances of HAS were obtained in pH-shift batch, pH-controlled batch, and continuous systems. These results emphasize the great importance of determining the most appropriate pH for Cr(VI) and total chromium removal, considering the operational mode of the proposed large-scale treatment system. Total chromium biosorption batch kinetics was well described by the Elovich model, whereas in the continuous system, the fitness of the kinetic models to the experimental data was pH dependent. X-ray photoelectron spectroscopy and kinetic studies clearly indicated that the reaction mechanism of Cr(VI) with HAS was the reductive biotransformation of Cr(VI) to Cr(III), which was partially released to the aqueous solution and partially biosorbed onto HAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aksu Z, Gönen F, Demircan Z (2002) Biosorption of chromium (VI) ions by Mowital®B30H resin immobilized activated sludge in a packed bed: comparison with granular activated carbon. Process Biochem 38:175–186

    Article  CAS  Google Scholar 

  • Aranda-García E, Morales-Barrera L, Pineda-Camacho G, Cristiani-Urbina E (2014) Effect of pH, ionic strength, and background electrolytes on Cr(VI) and total chromium removal by acorn shell of Quercus crassipes Humb. & Bonpl. Environ Monit Assess 186:6207–6221

    Article  CAS  Google Scholar 

  • Arslan G, Pehlivan E (2007) Batch removal of chromium (VI) from aqueous solution by Turkish brown coals. Bioresour Technol 98:2836–2845

    Article  CAS  Google Scholar 

  • Basha S, Murthy ZVP (2007) Kinetic and equilibrium models for biosorption of Cr(VI) on chemically modified seaweed, Cystoseira indica. Process Biochem 42:1521–1529

    Article  CAS  Google Scholar 

  • Blanes PS, Bordoni M, González JC, García SI, Atria AM, Sala LF, Bellú SE (2016) Application of soy hull biomass in removal of Cr(VI) from contaminated waters. Kinetic, thermodynamic and continuous sorption studies. J Environ Chem Eng 4:516–526

    Article  CAS  Google Scholar 

  • Blázquez G, Hernáinz F, Calero M, Martin-Lara MA, Tenorio G (2009) The effect of pH on the biosorption of Cr(III) and Cr(VI) with olive stone. Chem Eng J 148:473–479

    Article  CAS  Google Scholar 

  • Cabatingan LK, Agapay RC, Rakels JLL, Otens M, van der Wielen LAM (2001) Potential of biosorption for the recovery of chromate in industrial wastewater. Ind Eng Chem Res 40:2302–2309

    Article  CAS  Google Scholar 

  • Calderón-Oliver M, Escalona-Buendía HB, Medina-Campos ON, Pedraza-Chaverri J, Pedroza-Islas R, Ponce-Alquicira E (2016) Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts. LWT-Food Sci Technol 65:46–52

    Article  CAS  Google Scholar 

  • Calero M, Hernáinz F, Blázquez G, Tenorio G, Martín-Lara MA (2009) Study of Cr (III) biosorption in a fixed-bed column. J Hazard Mater 171:886–893

    Article  CAS  Google Scholar 

  • Chatterjee A, Schiewer S (2011) Biosorption of cadmium(II) ions by citrus peels in a packed bed column: effect of process parameters and comparison of different breakthrough curve models. Clean-Soil Air Water 39:874–881

    Article  CAS  Google Scholar 

  • Chauhan D, Sankararamakrishnan N (2011) Modeling and evaluation on removal of hexavalent chromium from aqueous systems using fixed bed column. J Hazard Mater 185:55–62

    Article  CAS  Google Scholar 

  • Chen S, Yue Q, Gao B, Li Q, Xu X, Fu K (2012) Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study. Bioresour Technol 113:114–120

    Article  CAS  Google Scholar 

  • Cheung CW, Porter JF, McKay G (2000) Sorption kinetics for the removal of copper and zinc from effluents using bone char. Sep Purif Technol 19:55–64

    Article  CAS  Google Scholar 

  • Cheung CW, Porter JF, McKay G (2001) Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res 35:605–612

    Article  CAS  Google Scholar 

  • Cimino G, Passerini A, Toscano G (2000) Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Res 34:2955–2962

    Article  CAS  Google Scholar 

  • Costa M (2003) Potential hazards of hexavalent chromium in our drinking water. Toxicol Appl Pharmacol 188:1–5

    Article  CAS  Google Scholar 

  • Cristiani-Urbina E, Netzahuatl-Muñoz AR, Cristiani-Urbina MDC (2011) Removal of hexavalent and total chromium from aqueous solution by avocado shell. Chem Eng Trans 24:1339–1344

    Google Scholar 

  • Daneshvar N, Salari D, Aber S (2002) Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake. J Hazard Mater 94:49–61

    Article  CAS  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Dupont L, Guillon E (2003) Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environ Sci Technol 37:4235–4241

    Article  CAS  Google Scholar 

  • El Nemr A, El-Sikaily A, Khaled A, Abdelwahab O (2015) Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab J Chem 8:105–117

    Article  CAS  Google Scholar 

  • Farooq U, Athar M, Khan MA, Kozinski JA (2013) Biosorption of Pb(II) and Cr(III) from aqueous solutions: breakthrough curves and modeling studies. Environ Monit Assess 185:845–854

    Article  CAS  Google Scholar 

  • Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645

    Article  CAS  Google Scholar 

  • Fellenz N, Perez-Alonso FJ, Martin PP, García-Fierro JL, Bengoa JF, Marchetti SG, Rojas S (2017) Chromium (VI) removal from water by means of adsorption-reduction at the surface of amino-functionalized MCM-41 sorbents. Microporous Mesoporous Mater 239:138–146

    Article  CAS  Google Scholar 

  • Fiol N, Escudero C, Poch J, Villaescusa I (2006) Preliminary studies on Cr(VI) removal from aqueous solution using grape stalk wastes encapsulated in calcium alginate beads in a packed bed up-flow column. React Funct Polym 66:795–807

    Article  CAS  Google Scholar 

  • Fiol N, Escudero C, Villaescusa I (2008) Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresour Technol 99:5030–5036

    Article  CAS  Google Scholar 

  • Ghasemi M, Keshtkar AR, Dabbagh R, Jaber Safdari S (2011) Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: Breakthrough curves studies and modeling. J Hazard Mater 189:141–149

    Article  CAS  Google Scholar 

  • Gokhale SV, Jyoti KK, Lele SS (2009) Modeling of chromium (VI) biosorption by immobilized Spirulina platensis in packed column. J Hazard Mater 170:735–743

    Article  CAS  Google Scholar 

  • Hach Company (2008) Hach Water Analysis Handbook. Hach, Loveland

    Google Scholar 

  • Hasan HS, Ranjan D, Talat M (2010) Water hyacinth biomass (WHB) for the biosorption of hexavalent chromium: optimization of process parameters. Bioresources 5:563–575

    CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (2002) Application of kinetic models to the sorption of copper(II) on to peat. Adsorpt Sci Technol 20:797–815

    Article  CAS  Google Scholar 

  • Horwitz W, Latimer GW Jr (2005) Official Methods of Analysis of AOAC International, 18th edn. Association of Official Analytical Chemists, AOAC International, Gaithersburg

    Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Lee YB, Naidu R (2016a) Potential of Melaleuca diosmifolia leaf as a low-cost adsorbent for hexavalent chromium removal from contaminated water bodies. Process Saf Environ Prot 100:173–182

    Article  CAS  Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Lee YB, Naidu R (2016b) Oak (Quercus robur) acorn peel as a low-cost adsorbent for hexavalent chromium removal from aquatic ecosystems and industrial effluents. Water Air Soil Pollut 227:62

    Article  CAS  Google Scholar 

  • Li Y, Wang W, Zhou L, Liu Y, Mirza ZA, Lin X (2017) Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Chemosphere 169:131–138

    Article  CAS  Google Scholar 

  • Lopez-Nuñez PV, Aranda-García E, Cristiani-Urbina MDC, Morales-Barrera L, Cristiani-Urbina E (2014) Removal of hexavalent and total chromium from aqueous solutions by plum (P. domestica L.) tree bark. Environ Eng Manag J 13:1927–1938

    Article  Google Scholar 

  • Malkoc E, Nuhoglu Y, Abali Y (2006) Cr(VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: prediction of breakthrough curves. Chem Eng J 119:61–68

    Article  CAS  Google Scholar 

  • Marahel F, Khan MA, Marahel E, Bayesti I, Hosseini S (2015) Kinetics, thermodynamics, and isotherm studies for the adsorption of BR2 dye onto avocado integument. Desalin Water Treat 53:826–835

    Article  CAS  Google Scholar 

  • Mishra A, Dubey A, Shingal S (2015) Biosorption of chromium (VI) from aqueous solutions using plant biomass. Int J Environ Sci Technol 12:1415–1426

    Article  CAS  Google Scholar 

  • Morales-Barrera L, Guillén-Jiménez FDM, Ortiz-Moreno A, Villegas-Garrido TL, Sandoval-Cabrera A, Hernández-Rodríguez CH, Cristiani-Urbina E (2008) Isolation, identification and characterization of a Hypocrea tawa strain with high Cr(VI) reduction potential. Biochem Eng J 40:284–292

    Article  CAS  Google Scholar 

  • Moussavi G, Barikbin B (2010) Biosorption of chromium(VI) from industrial wastewater onto pistachio hull waste biomass. Chem Eng J 162:893–900

    Article  CAS  Google Scholar 

  • Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70:1128–1134

    Article  CAS  Google Scholar 

  • Netzahuatl-Muñoz AR, Aranda-García E, Cristiani-Urbina MDC, Barragán-Huerta BE, Villegas-Garrido TL, Cristiani-Urbina E (2010) Removal of hexavalent and total chromium from aqueous solutions by Schinus molle bark. Fresenius Environ Bull 19:2911–2918

    Google Scholar 

  • Netzahuatl-Muñoz AR, Morales-Barrera L, Cristiani-Urbina MDC, Cristiani-Urbina E (2012a) Hexavalent chromium reduction and chromium biosorption by Prunus serotina bark. Fresenius Environ Bull 21:1793–1801

    Google Scholar 

  • Netzahuatl-Muñoz AR, Guillén-Jiménez FDM, Chávez-Gómez B, Villegas-Garrido TL, Cristiani-Urbina E (2012b) Kinetic study of the effect of pH on hexavalent and trivalent chromium removal from aqueous solution by Cupressus lusitanica bark. Water Air Soil Pollut 223:625–641

    Article  CAS  Google Scholar 

  • Netzahuatl-Muñoz AR, Cristiani-Urbina MDC, Cristiani-Urbina E (2015) Chromium biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark. PLoS ONE 10(9):e0137086

    Article  CAS  Google Scholar 

  • Ozdes D, Gundogdu A, Kemer B, Duran C, Kucuk M, Soylak M (2014) Assessment of kinetics, thermodynamics and equilibrium parameters of Cr(VI) biosorption onto Pinus brutis Ten. Can J Chem Eng 92:139–147

    Article  CAS  Google Scholar 

  • Park D, Yun Y-S, Park JM (2004) Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Environ Sci Technol 38:4860–4864

    Article  CAS  Google Scholar 

  • Park D, Yun Y-S, Jo JH, Park JM (2005) Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 39:533–540

    Article  CAS  Google Scholar 

  • Park D, Lim SR, Yun YS, Park JM (2007) Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere 70:298–305

    Article  CAS  Google Scholar 

  • Park D, Yun Y-S, Kim JY, Park JM (2008a) How to study Cr(VI) biosorption: use of fermentation waste for detoxifying Cr(VI) in aqueous solution. Chem Eng J 136:173–179

    Article  CAS  Google Scholar 

  • Park D, Yun Y-S, Park JM (2008b) XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. J Colloid Interface Sci 317:54–61

    Article  CAS  Google Scholar 

  • Park D, Yun Y-S, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102

    Article  CAS  Google Scholar 

  • Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interf Sci 152(1–2):2–13

    Article  CAS  Google Scholar 

  • Ponce SC, Prado C, Pagano E, Prado FE, Rosa M (2015) Effect of solution pH on the dynamic of biosorption of Cr(VI) by living plants of Salvinia minima. Ecol Eng 74:33–41

    Article  Google Scholar 

  • Rangabhashiyam S, Nakkeeran E, Anu N, Selvaraju N (2015) Biosorption potential of a novel powder, prepared from Ficus auriculata leaves, for sequestration of hexavalent chromium from aqueous solutions. Res Chem Intermed 41:8405–8424

    Article  CAS  Google Scholar 

  • Rodríguez-Carpena JG, Morcuende D, Estévez M (2011) Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage. Meat Sci 89:166–173

    Article  CAS  Google Scholar 

  • Romero-González J, Walton JC, Peralta-Videa JR, Rodríguez E, Romero J, Gardea-Torresdey JR (2009) Modeling the adsorption of Cr(III) from aqueous solution onto Agave lechuguilla biomass: study of the advective and dispersive transport. J Hazard Mater 161:360–365

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2008) Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 160:349–355

    Article  CAS  Google Scholar 

  • Senthilkumar R, Vijayaraghavan K, Jegan J, Velan M (2010) Batch and column removal of total chromium from aqueous solution using Sargassum polycystum. Environ Prog Sustain Energy 29:334–341

    Article  CAS  Google Scholar 

  • Shen Y-S, Wang S-L, Huang S-T, Tzou Y-M, Huang J-H (2010) Biosorption of Cr(VI) by coconut coir: spectroscopy investigation on the reaction mechanism of Cr(VI) with lignocellulosic material. J Hazard Mater 179:160–165

    Article  CAS  Google Scholar 

  • Silva B, Figueiredo H, Quintelas C, Neves IC, Tavares T (2012) Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite. Int Biodeterior Biodegrad 74:116–123

    Article  CAS  Google Scholar 

  • Spasojevic PM, Panic VV, Jovic MD, Markovic J, van Roost C, Popovic IG, Velickovic SJ (2016) Biomimic hybrid polymer networks based on casein and poly(methacrylic acid). Case study: Ni2+ removal. J Mater Chem A 4:1680–1693

    Article  CAS  Google Scholar 

  • Tunali S, Kiran I, Akar T (2005) Chromium(VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner Eng 18:681–689

    Article  CAS  Google Scholar 

  • Vázquez-Palma DE, Netzahuatl-Muñoz AR, Pineda-Camacho G, Cristiani-Urbina E (2017) Biosorptive removal of Ni(II) ions from aqueous solution by Hass avocado (Persea americana Mill. var. Hass) shell as an effective and low-cost biosorbent. Fresenius Environ Bull 26(5):3501–3513

    Google Scholar 

  • Vieira MGA, Oisiovici RM, Gimenes ML, Silva MGC (2008) Biosorption of chromium(VI) using a Sargassum sp. packed-bed column. Bioresour Technol 99:3094–3099

    Article  CAS  Google Scholar 

  • Vinod VTP, Wactawek S, Senan C, Kupcik J, Pesková K, Cernik M, Somashekarappa HM (2017) Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Adv 7:13997–14009

    Article  Google Scholar 

  • Yang L, Chen JP (2008) Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresour Technol 99:297–307

    Article  CAS  Google Scholar 

  • Zheng S, Huang H, Zhang R, Cao L (2014) Removal of Cr(VI) from aqueous solutions by fruiting bodies of the jelly fungus (Auricularia polytricha). Appl Microbiol Biotechnol 98:8729–8736

    Article  CAS  Google Scholar 

  • Zhong QQ, Yue QY, Li Q, Gao BY, Xu X (2014) Removal of Cu(II) and Cr(VI) from wastewater by an amphoteric sorbent based on cellulose-rich biomass. Carbohydr Polym 111:788–796

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The CONACyT awarded a graduate scholarship to one of the authors (E.A.-G.). E.C.-U. holds grants from COFAA-IPN, EDI-IPN, and SNI-CONACyT.

Funding

The authors gratefully acknowledge the support provided by the scientific team of the Centro de Nanociencias y Micro y Nanotecnologías, IPN, as well as the financial support provided by the Secretaría de Investigación y Posgrado, IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Cristiani-Urbina.

Additional information

Responsible editor: Guilherme L. Dotto

Electronic supplementary material

ESM 1

(DOCX 33.6 kb).

ESM 2

(DOCX 32.3 kb).

ESM 3

(DOCX 17.9 kb).

ESM 4

(DOCX 30.9 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aranda-García, E., Cristiani-Urbina, E. Effect of pH on hexavalent and total chromium removal from aqueous solutions by avocado shell using batch and continuous systems. Environ Sci Pollut Res 26, 3157–3173 (2019). https://doi.org/10.1007/s11356-017-0248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0248-z

Keywords

Navigation