Skip to main content
Log in

The effects of diosmin on aflatoxin-induced liver and kidney damage

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aflatoxin is among the natural toxins that cause serious side effects on living things. Diosmin is also one of the compounds with broad pharmacological effects. In this study, the effects on the oxidant/antioxidant system of 50 mg/kg body weight/day dose of diosmin, aflatoxin (500 μg/kg body weight/day), and combined aflatoxin (500 μg/kg body weight/day) plus diosmin (50 mg/kg body weight/day) given to the stomach via catheter female adult Wistar Albino rats is examined. Forty rats were used in the experiment, and these animals were randomly allocated to four equal groups. The test phase lasted 21 days, and blood samples and tissue (liver and kidney) samples were taken after this period was over. Some biochemical parameters (glucose, triglyceride, cholesterol, blood urea nitrogen, creatinine, uric acid, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total protein, albumin) and levels of malondialdehyde, nitric oxide, and 4-hydroxynonenal and activities of superoxide dismutase, catalase, and glutathione peroxidase were analyzed in the samples. The aflatoxin administered over the period indicated a significant increase in levels of malondialdehyde (MDA), nitric oxide (NO), and 4-hydroxynonenal (4-HNE) in all tissues and blood samples. Therewithal, the activity of antioxidant enzymes showed a change in the decreasing direction. Biochemical parameters of the group in which aflatoxin were administered alone changed unfavorably. Parallel effects were also observed in the histopathological findings of this group. The results showed that aflatoxin changed antioxidant/oxidant balance in favor of oxidant and eventually led to lipid peroxidation. Diosmin administration to aflatoxin-treated animals resulted in positive changes in antioxidant enzyme activities while the levels of MDA, NO, and 4-HNE were reduced in all tissues and blood samples examined. Diosmin alleviates the oxidative stress caused by aflatoxin. Similar improvement was observed in biochemical parameters of this group as well as in liver and kidney histopathology. No significant change was observed in the group treated with diosmin alone in terms of the parameters examined and histologic findings. As a result, diosmin may be included in compounds that can be used as a therapeutic and prophylactic agent in the event of the formation of aflatoxin exposure and poisoning in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Hamid AA, Firgany A-D (2015) Vitamin E supplementation ameliorates aflatoxin B1-induced nephrotoxicity in rats. Acta Histochem 117:767–779

    Article  CAS  Google Scholar 

  • Aiko V, Mehta A (2015) Occurrence, detection and detoxification of mycotoxins. J Biosci 40:943–954

    Article  CAS  Google Scholar 

  • Anon (2004) Monograph. Diosmin Altern Med Rev 9:308–311

    Google Scholar 

  • Arab HH, Salama SA, Omar HA, Arafa e-SA, Maghrabi IA (2015) Diosmin protects against ethanol-induced gastric injury in rats: novel anti-ulcer actions. PLoS One 10:e0122417

    Article  Google Scholar 

  • Asare GA, Bronz M, Naidoo V, Kew MC (2007) Interactions between aflatoxin B1 and dietary iron overload in hepatic mutagenesis. Toxicology 234:157–166

    Article  CAS  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  Google Scholar 

  • Bogucka-Kocka A, Woźniak M, Feldo M, Kockic J, Szewczyk K (2013) Diosmin-isolation techniques, determination in plant material and pharmaceutical formulations, and clinical use. Nat Prod Commun 8:545–550

    CAS  Google Scholar 

  • Campanero MA, Escolar M, Perez G, Garcia-Quetglas E, Sadaba B, Azanza JR (2010) Simultaneous determination of diosmin and diosmetin in human plasma by ion trap liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry: Application to a clinical pharmacokinetic study. J Pharm Biomed Anal 51:875–881

    Article  CAS  Google Scholar 

  • Choi KC, Chung WT, Kwon JK, Yu JY, Jang YS, Park SM, Lee SY, Lee JC (2010) Inhibitory effects of quercetin on aflatoxin B1-induced hepatic damage in mice. Food Chem Toxicol 48:2747–2753

    Article  CAS  Google Scholar 

  • Choudhary A, Verma RJ (2005) Ameliorative effects of black tea extract on aflatoxin-induced lipid peroxidation in the liver of mice. Food Chem Toxicol 43:99–104

    Article  CAS  Google Scholar 

  • Corcuera LA, Amézqueta S, Arbillaga L, Vettorazzi A, Touriño S, Torres JL, López de Cerain A (2012) A polyphenol-enriched cocoa extract reduces free radicals produced by mycotoxins. Food Chem Toxicol 50:989–895

    Article  CAS  Google Scholar 

  • Csala M, Kardon T, Legeza B, Lizák B, Mandl J, Margittai É, Puskás F, Száraz P, Szelényi P, Bánhegyi G (2015) On the role of 4-hydroxynonenal in health and disease. Biochim Biophys Acta 1852:826–838

    Article  CAS  Google Scholar 

  • Demet Ö, Oğuz H, Çelik I, Nizamlıoğlu F (1995) Pirinçte aflatoksin üretilmesi. Vet Bil Derg 11:19–23

    Google Scholar 

  • Dohnal V, Wu Q, Kuča K (2014) Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences. Arch Toxicol 88:1635–1644

    Article  CAS  Google Scholar 

  • El-Agamy DS (2010) Comparative effects of curcumin and resveratrol on aflatoxin B (1)-induced liver injury in rats. Arch Toxicol 84:389–396

    Article  CAS  Google Scholar 

  • El-Nekeety AA, Mohamed SR, Hathout AS, Hassan NS, Aly SE, Abdel-Wahhab MA (2011) Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon 57:984–991

    Article  CAS  Google Scholar 

  • Eraslan G, Kanbur M, Aslan Ö, Karabacak M (2013) The antioxidant effects of pumpkin seed oil on subacute aflatoxin poisoning in mice. Environ Toxicol 28:681–688

    Article  CAS  Google Scholar 

  • Eraslan G, Kanbur M, Karabacak M, Sarica Soyer Z (2015) Ameliorative effect of colostrum on aflatoxin-induced biochemical changes in mice. Fresenius Environ Bull 24:546–551

    CAS  Google Scholar 

  • Fairbanks VF, Klee GG (1987) Biochemical aspect of hematology. In: Tietz NW (ed) Fundamentals of clinical chemistry, 3rd edn. WB Saunders, Philadelphia, pp 803–806

    Google Scholar 

  • Ferrari R, Ceconi C, Curello S, Cargnoni A, Alfieri O, Pardini A, Marzollo P, Visioli O (1991) Oxygen free radicals and myocardial damage: protective role of thiol-containing agents. Am J Med 91:95–105

    Article  Google Scholar 

  • Germoush MO (2016) Diosmin protects against cyclophosphamide-induced liver injury through attenuation of oxidative stress, inflammation and apoptosis. Int J Pharmacol 12:644–654

    Article  Google Scholar 

  • Guengerich FP, Raney KD, Kim DH, Shimada T, Meyer DJ, Ketterer B, Harris TM (1992) Oxidation and conjugation of aflatoxins by humans and experimental animals. Prog Clin Biol Res 374:157–165

    CAS  Google Scholar 

  • Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44:1098–1124

    Article  Google Scholar 

  • Gupta R, Sharma V (2011) Ameliorative effects of tinospora cordifolia root extract on histopathological and biochemical changes induced by aflatoxin-b(1) in mice kidney. Toxicol Int 18:94–98

    Article  Google Scholar 

  • Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    CAS  Google Scholar 

  • Halliwell B (1999) Antioxidant defense mechanisms: from the beginning to the end (of the beginning). Free Radic Res 31:261–272

    Article  CAS  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:715–724

    Google Scholar 

  • Hathout AS, Mohamed SR, El-Nekeety AA, Hassan NS, Aly SE, Abdel-Wahhab MA (2011) Ability of Lactobacillus casei and Lactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon 58:179–186

    Article  CAS  Google Scholar 

  • Hou YJ, Zhao YY, Xiong B, Cui XS, Kim NH, Xu YX, Sun SC (2013) Mycotoxin-containing diet causes oxidative stress in the mouse. PLoS One 8:e60374

    Article  CAS  Google Scholar 

  • Hussain S, Khan MZ, Khan A, Javed I, Asi MR (2009) Toxico-pathological effects in rats induced by concurrent exposure to aflatoxin and cypermethrin. Toxicon 53:33–41

    Article  CAS  Google Scholar 

  • Ingawale DK, Mandlik SK, Naik SR (2014) Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism(s): a critical discussion. Environ Toxicol Pharmacol 37:118–133

    Article  CAS  Google Scholar 

  • Jain D, Bansal MK, Dalvi R, Upganlawar A, Somani R (2014) Protective effect of diosmin against diabetic neuropathy in experimental rats. J Integr Med 12:35–41

    Article  Google Scholar 

  • Jodynis-Liebert J, Matławska I, Bylka W, Murias M (2006) Protective effect of Aquilegia vulgaris L. on aflatoxin B(1)-induced hepatic damage in rats. Environ Toxicol Pharmacol 22:58–63

    Article  CAS  Google Scholar 

  • Kanaze FI, Termentzi A, Gabrieli C, Niopas I, Georgarakis M, Kokkalou E (2009) The phytochemical analysis and antioxidant activity assessment of orange peel (Citrus sinensis) cultivated in Greece-Crete indicates a new commercial source of hesperidin. Biomed Chromatogr 23:239–249

    Article  CAS  Google Scholar 

  • Kanbur M, Eraslan G, Sarıca Soyer Z, Aslan O (2011) The effects of evening primrose oil on lipid peroxidation induced by subacute aflatoxin exposure in mice. Food Chem Toxicol 49:1960–1964

    Article  CAS  Google Scholar 

  • Karabacak M, Eraslan G, Kanbur M, Sarıca Soyer Z (2015) Effects of Tarantula cubensis D6 on aflatoxin-induced injury in biochemical parameters in rats. Homeopathy 104:205–210

    Article  Google Scholar 

  • Larsson P, Persson E, Tyden E, Tjalve H (2003) Cell-specific activation of aflatoxin B1 correlates with presence of some cytochrome P450 enzymes in olfactory and respiratory tissues in horse. Res Vet Sci 74:227–233

    Article  CAS  Google Scholar 

  • Li Y, Ma QG, Zhao LH, Guo YQ, Duan GX, Zhang JY, Ji C (2013) Protective efficacy of alpha-lipoic acid against aflatoxinB1-induced oxidative damage in the liver. Asian-Australas J Anim Sci 27:907–915

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Luck HS (1965) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, London, pp 885–894

    Chapter  Google Scholar 

  • Ma Q, Li Y, Fan Y, Zhao L, Wei H, Ji C, Zhang J (2015) Molecular mechanisms of lipoic acid protection against aflatoxin B1-induced liver oxidative damage and inflammatory responses in broilers. Toxins (Basel) 7:5435–5447

    Article  CAS  Google Scholar 

  • Marin S, Ramos AJ, Cano-Sancho G, Sanchis V (2013) Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 60:218–237

    Article  CAS  Google Scholar 

  • Mary VS, Theumer MG, Arias SL, Rubinstein HR (2012) Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells. Toxicology 302:299–307

    Article  CAS  Google Scholar 

  • McLean M, Dutton MF (1995) Cellular interactions and metabolism of aflatoxin: an update. Pharmacol Ther 65:163–192

    Article  CAS  Google Scholar 

  • Michel F, Bonnefont-Rousselot D, Mas E, Drai J, Thérond P (2008) Biomarkers of lipid peroxidation: analytical aspects. Ann Biol Clin (Paris) 66:605–620

    CAS  Google Scholar 

  • Miller GL (1959) Protein determination for large numbers of samples. Anal Chem 31:964

    Article  CAS  Google Scholar 

  • Nabney J, Nesbitt BF (1965) A spectrophotometric method for determining the aflatoxins. Analyst 90:155–160

    Article  CAS  Google Scholar 

  • Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484

    Article  CAS  Google Scholar 

  • Nili-Ahmadabadi A, Tavakoli F, Hasanzadeh G, Rahimi H, Sabzevari O (2011) Protective effect of pretreatment with thymoquinone against Aflatoxin B(1) induced liver toxicity in mice. Daru 19:282–287

    CAS  Google Scholar 

  • O'Brien PJ (1988) Free-radical-mediated chemical carcinogenesis. Ann N Y Acad Sci 534:552–564

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1978) Reaction of linoleic acid hydroperoxide with thiobarbituric acid. J Lipid Res 19:1053–1057

    CAS  Google Scholar 

  • Opara EC (2006) Oxidative stress. Dis Mon 52:183–198

    Article  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  Google Scholar 

  • Pimpukdee K, Kubena LF, Bailey CA, Huebner HJ, Afriyie-Gyawu E, Phillips TD (2004) Aflatoxin-induced toxicity and depletion of hepatic vitamin A in young broiler chicks: protection of chicks in the presence of low levels of NovaSil PLUS in the diet. Poult Sci 83:737–744

    Article  CAS  Google Scholar 

  • Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74

    Article  CAS  Google Scholar 

  • Pitt JI (2000) Toxigenic fungi and mycotoxins. Br Med Bull 56:184–192

    Article  CAS  Google Scholar 

  • Preetha SP, Kanniappan M, Selvakumar E, Nagaraj M, Varalakshmi P (2006) Lupeol ameliorates aflatoxin B1-induced peroxidative hepatic damage in rats. Comp Biochem Physiol C Toxicol Pharmacol 143:333–339

    Article  CAS  Google Scholar 

  • Queenthy SS, John B (2013) Diosmin exhibits anti-hyperlipidemic effects in isoproterenol induced myocardial infarcted rats. Eur J Pharmacol 718:213–218

    Article  CAS  Google Scholar 

  • Rawal S, Kim JE, Coulombe R Jr (2010) Aflatoxin B1 in poultry: toxicology, metabolism and prevention. Res Vet Sci 89:325–331

    Article  CAS  Google Scholar 

  • Rehman MU, Tahir M, Khan AQ, Khan R, Lateef A, Hamiza OO, Ali F, Sultana S (2013) Diosmin protects against trichloroethylene-induced renal injury in Wistar rats: plausible role of p53, Bax and caspases. Br J Nutr 110:699–710

    Article  CAS  Google Scholar 

  • Roberts BA, Patterson DS (1975) Detection of twelve mycotoxins in mixed animal feedstuffs, using a novel membrane clean up procedure. J Assoc Off Anal Chem 58:1178–1181

    CAS  Google Scholar 

  • Roze LV, Hong SY, Linz JE (2013) Aflatoxin biosynthesis: current frontiers. Annu Rev Food Sci Technol 4:293–311

    Article  CAS  Google Scholar 

  • Senthamizhselvan O, Manivannan J, Silambarasan T, Raja B (2014) Diosmin pretreatment improves cardiac function and suppresses oxidative stress in rat heart after ischemia/reperfusion. Eur J Pharmacol 736:131–137

    Article  CAS  Google Scholar 

  • Shotwell OL, Hesseltine CW, Stubblefield RD, Sorenson WG (1966) Production of aflatoxin on rice. Appl Microbiol 14:425–428

    CAS  Google Scholar 

  • Sirajudeen M, Gopi K, Tyagi JS, Moudgal RP, Mohan J, Singh R (2011) Protective effects of melatonin in reduction of oxidative damage and immunosuppression induced by aflatoxin B1-contaminated diets in young chicks. Environ Toxicol 26:153–160

    Article  CAS  Google Scholar 

  • Souza MF, Tomé AR, Rao VS (1999) Inhibition by the bioflavonoid ternatin of aflatoxin B1-induced lipid peroxidation in rat liver. J Pharm Pharmacol 51:125–129

    Article  CAS  Google Scholar 

  • Srinivasan S, Pari L (2012) Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chem Biol Interact 195:43–51

    Article  CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    CAS  Google Scholar 

  • Tanrikulu Y, Sahin M, Kismet K, Kilicoglu SS, Devrim E, Tanrikulu CS, Erdemli E, Erel S, Bayraktar K, Akkus MA (2013) The protective effect of diosmin on hepatic ischemia reperfusion injury: an experimental study. Bosn J Basic Med Sci 13:218–224

    Article  Google Scholar 

  • Tracey WR, Tse J, Carter G (1995) Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J Pharmacol Exp Ther 272:1011–1015

    CAS  Google Scholar 

  • Villa P, Cova D, De Francesco L, Guaitani A, Palladini G, Perego R (1992) Protective effect of diosmetin on in vitro cell membrane damage and oxidative stress in cultured rat hepatocytes. Toxicology 73:179–189

    Article  CAS  Google Scholar 

  • Vipin AV, Raksha Rao K, Nawneet KK, Anu Appaiah KA, Venkateswaran G (2017) Protective effects of phenolics rich extract of ginger against Aflatoxin B1-induced oxidative stress and hepatotoxicity. Biomed Pharmacother 91:415–424

    Article  CAS  Google Scholar 

  • Vladimirov IuA (1998) Free radicals and antioxidants. Vestn Ross Akad Med Nauk 7:43–51

    Google Scholar 

  • Vladimirov YA, Proskurnina EV (2009) Free radicals and cell chemiluminescence. Biochemistry (Mosc) 74:1545–1566

    Article  CAS  Google Scholar 

  • Wang JS, Groopman JD (1999) DNA damage by mycotoxins. Mutat Res 424:167–181

    Article  CAS  Google Scholar 

  • Wild CP, Turner PC (2002) The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 17:471–481

    Article  CAS  Google Scholar 

  • Winterbourn CC, Hawkins RE, Brian M, Carrell RW (1975) The estimation of red cell superoxide dismutase activity. J Lab Clin Med 85:337–341

    CAS  Google Scholar 

  • Wu Q, Jezkova A, Yuan Z, Pavlikova L, Dohnal V, Kuca K (2009) Biological degradation of aflatoxins. Drug Metab Rev 41:1–7

    Article  Google Scholar 

  • Yang CF, Liu J, Shen HM, Ong CN (2000) Protective effect of ebselen on aflatoxin B1-induced cytotoxicity in primary rat hepatocytes. Pharmacol Toxicol 86:156–161

    Article  CAS  Google Scholar 

  • Yoshioka T, Kawada K, Shimada T, Mori M (1979) Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol 135:372–376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan Eraslan.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eraslan, G., Sarıca, Z.S., Bayram, L.Ç. et al. The effects of diosmin on aflatoxin-induced liver and kidney damage. Environ Sci Pollut Res 24, 27931–27941 (2017). https://doi.org/10.1007/s11356-017-0232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0232-7

Keywords

Navigation