Environmental Science and Pollution Research

, Volume 24, Issue 33, pp 25933–25946 | Cite as

Proteomic analysis of the soil filamentous fungus Aspergillus nidulans exposed to a Roundup formulation at a dose causing no macroscopic effect: a functional study

  • Florence Poirier
  • Céline Boursier
  • Robin Mesnage
  • Nathalie Oestreicher
  • Valérie Nicolas
  • Christian VélotEmail author
Research Article


Roundup® is a glyphosate-based herbicide (GBH) used worldwide both in agriculture and private gardens. Thus, it constitutes a substantial source of environmental contaminations, especially for water and soil, and may impact a number of non-target organisms essential for ecosystem balance. The soil filamentous fungus Aspergillus nidulans has been shown to be highly affected by a commercial formulation of Roundup® (R450), containing 450 g/L of glyphosate (GLY), at doses far below recommended agricultural application rate. In the present study, we used two-dimensional gel electrophoresis combined to mass spectrometry to analyze proteomic pattern changes in A. nidulans exposed to R450 at a dose corresponding to the no-observed-adverse-effect level (NOAEL) for macroscopic parameters (31.5 mg/L GLY among adjuvants). Comparative analysis revealed a total of 82 differentially expressed proteins between control and R450-treated samples, and 85% of them (70) were unambiguously identified. Their molecular functions were mainly assigned to cell detoxification and stress response (16%), protein synthesis (14%), amino acid metabolism (13%), glycolysis/gluconeogenesis/glycerol metabolism/pentose phosphate pathway (13%) and Krebs TCA cycle/acetyl-CoA synthesis/ATP metabolism (10%). These results bring new insights into the understanding of the toxicity induced by higher doses of this herbicide in the soil model organism A. nidulans. To our knowledge, this study represents the first evidence of protein expression modulation and, thus, possible metabolic disturbance, in response to an herbicide treatment at a dose that does not cause any visible effect. These data are likely to challenge the concept of “substantial equivalence” when applied to herbicide-tolerant plants.


Roundup® NOAEL Aspergillus nidulans Proteomics Metabolism Herbicide tolerance Substantial equivalence 



This work was supported by the non-governmental organization “Générations Futures” and the Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), in the framework of a participatory research project.

Funding information

It received funding from the Regional Council Ile-de-France and the University Paris-Sud.


  1. Ahsan N, Lee D-G, Lee K-W, Alam I, Lee S-H, Bahk JD, Lee B-H (2008) Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem 46:1062–1070CrossRefGoogle Scholar
  2. Aumaitre A, Aulrich K, Chesson A, Flachowsky G, Piva G (2002) New feeds from genetically modified plants: substantial equivalence, nutritional equivalence and safety for animals and animal products. Livest Prod Sci 74:223–238CrossRefGoogle Scholar
  3. Bentley R (1990) The shikimate pathway—a metabolic tree with many branches. Crit Rev Biochem Mol Biol 25:307–384CrossRefGoogle Scholar
  4. Binder S (2010) Branched-chain amino acid metabolism in Arabidopsis thaliana. Arabidopsis Book.
  5. Blomberg A, Adler L (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087–1092CrossRefGoogle Scholar
  6. Braconi D, Possenti S, Laschi M, Geminiani M, Lusini P, Bernardini G, Santucci A (2008) Oxidative damage mediated by herbicides on yeast cells. J Agric Food Chem 56:3836–3845CrossRefGoogle Scholar
  7. Braconi D, Sotgiu M, Millucci L, Paffetti A, Tasso F, Alisi C, Martini S, Rappuoli R, Lusini P, Sprocati AR, Rossi C, Santucci A (2006) Comparative analysis of the effects of locally used herbicides and their active ingredients on a wild-type wine Saccharomyces cerevisiae strain. J Agric Food Chem 54:3163–3172CrossRefGoogle Scholar
  8. Carranza CS, Barberis CL, Chiacchiera SM, Magnoli CE (2014) Influence of the pesticides glyphosate, chlorpyrifos and atrazine on growth parameters of nonochratoxigenic Aspergillus section Nigri strains isolated from agricultural soils. J Environ Sci Health 49:747–755CrossRefGoogle Scholar
  9. Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P, Wymore F, Sherlock G, Wortman JR (2014) The Aspergillus genome database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 42:705–710CrossRefGoogle Scholar
  10. Clair E, Linn L, Travert C, Amiel C, Séralini G-E, Panoff J-M (2012) Effects of Roundup(®) and glyphosate on three food microorganisms: Geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus. Curr Microbiol 64:486–491CrossRefGoogle Scholar
  11. Coupe RH, Capel PD (2015) Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States. Pest Manag Sci 72:1013–1022CrossRefGoogle Scholar
  12. Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56CrossRefGoogle Scholar
  13. Cuhra M (2015) Review of GMO safety assessment studies: glyphosate residues in Roundup Ready crops is an ignored issue. Env Sci Eur 27:20. CrossRefGoogle Scholar
  14. Cuhra M, Traavik T, Bøhn T (2013) Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna. Ecotoxicology 22:251–262CrossRefGoogle Scholar
  15. de Aguiar LM, Figueira FH, Gottschalk MS, da Rosa CE (2016) Glyphosate-based herbicide exposure causes antioxidant defence responses in the fruit fly Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 185-186:94–101CrossRefGoogle Scholar
  16. de Arruda Grossklaus D, Bailão AM, Vieira Rezende TC, Borges CL, de Oliveira MA, Parente JA, de Almeida Soares CM (2013) Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis. Microbes Infect 15:347–364CrossRefGoogle Scholar
  17. de Melo Tarouco F, de Godoi FG, Velasques RR, da Silveira GA, Geihs MA, da Rosa CE (2016) Effects of the herbicide Roundup on the polychaeta Laeonereis acuta: cholinesterases and oxidative stress. Ecotoxicol Environ Saf 135:259–266CrossRefGoogle Scholar
  18. Duke SO, Baerson SR, Rimando AM (2003) Herbicides: glyphosate. In: Plimmer JR, Gammon DW, Ragsdale NN (eds) Encyclopedia of agrochemicals. John Wiley & Sons, New York, pp 708–869Google Scholar
  19. Fang Y, Gao X, Zha NB, Li X, Gao Z, Chao F (2010) Identification of differential hepatic proteins in rare minnow (Gobiocypris rarus) exposed to pentachlorophenol (PCP) by proteomic analysis. Toxicol Lett 199:69–79CrossRefGoogle Scholar
  20. Félenbok B, Kelly JM (1996) Regulation of carbon metabolism in mycelial fungi. In: Marzluf G, Beambl R (eds) The Mycota III: biochemistry and molecular biology, 1st edn. Springer, Berlin Heidelberg New York, pp 369–380CrossRefGoogle Scholar
  21. Flipphi M, van de Vondervoort PJ, Ruijter GJ, Visser J, Arst HN Jr, Felenbok B (2003) Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. J Biol Chem 278:11849–11857CrossRefGoogle Scholar
  22. Froidevaux-Klipfel L, Poirier F, Boursier C, Crépin R, Poüs C, Baudin B, Baillet A (2011) Modulation of septin and molecular motor recruitment in the microtubule environment of the Taxol-resistant human breast cancer cell line MDA-MB-231. Proteomics 11:3877–3886CrossRefGoogle Scholar
  23. Gancedo C, Llobell A, Ribas J-C, Luchi F (1986) Isolation and characterization of mutants from Schyzosaccharomyces pombe defective in glycerol catabolism. Eur J Biochem 159:171–174CrossRefGoogle Scholar
  24. Gaupp-Berghausen M, Hofer M, Rewald B, Zaller JG (2015) Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci Rep 5:12886CrossRefGoogle Scholar
  25. Gillardin V, Silvestre F, Dieu M, Delaive E, Raes M, Thome J-P, Kestemont P (2009) Protein expression profiling in the African clawed frog Xenopus laevis tadpoles exposed to the polychlorinated biphenyl mixture Aroclor 1254. Mol Cell Proteomics 8:596–611CrossRefGoogle Scholar
  26. Gomes MP, Bicalho EM, Smedbol É, Cruz FV, Lucotte M, Garcia QS (2017) Glyphosate can decrease germination of glyphosate-resistant soybeans. J Agric Food Chem 65:2279–2286CrossRefGoogle Scholar
  27. Gomes MP, Juneau P (2016) Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: is the mitochondrial electron transport chain a target of this herbicide? Environ Pollut 218:402–409CrossRefGoogle Scholar
  28. Hickey PC, Swift SR, Roca MG, Read ND (2005) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. In: Savidge T, Pothoulakis C (eds) Methods in microbiology, Microbial Imaging, vol 35. Elsevier, London, pp 63–87Google Scholar
  29. Hynes MJ, Murray SL (2010) ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryot Cell 9:1039–1048CrossRefGoogle Scholar
  30. Hynes MJ, Szewczyk E, Murray SL, Suzuki Y, Davis MA, Sealy-Lewis HM (2007) Transcriptional control of gluconeogenesis in Aspergillus nidulans. Genetics 176:139–150CrossRefGoogle Scholar
  31. James C (2011) Global status of commercialized biotech/GM crops. ISAAA brief no 43. ISAAA, Ithaca, NYGoogle Scholar
  32. Kawasaki L, Wysong D, Diamond R, Aguirre J (1997) Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. J Bacteriol 179:3284–3292CrossRefGoogle Scholar
  33. Kelly JM, Hynes MJ (1981) The regulation of phosphoenolpyruvate carboxykinase and the NADP-linked malic enzyme in Aspergillus nidulans. J Gen Microbiol 123:371–375Google Scholar
  34. Kniemeyer O (2011) Proteomics of eukaryotic microorganisms: the medically and biotechnologically important fungal genus Aspergillus. Proteomics 11:3232–3243CrossRefGoogle Scholar
  35. Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471CrossRefGoogle Scholar
  36. Kumari N, Narayan OP, Rai LC (2009) Understanding butachlor toxicity in Aulosira fertilissima using physiological, biochemical and proteomic approaches. Chemosphere 77:1501–1507CrossRefGoogle Scholar
  37. Lemos MF, Soares AM, Correia AC, Esteves AC (2010) Proteins in ecotoxicology—how, why and why not? Proteomics 10:873–887CrossRefGoogle Scholar
  38. Lescuyer P, Strub JM, Luche S, Diemer H, Martinez P, Van Dorsselaer A, Lunardi J, Rabilloud T (2003) Progress in the definition of a reference human mitochondrial proteome. Proteomics 3:157–167CrossRefGoogle Scholar
  39. Lipok J, Studnik H, Gruyaert S (2010) The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs. Ecotoxicol Environ Saf 73:1861–1868CrossRefGoogle Scholar
  40. Martinelli SD, Kinghorn JR (1994) Aspergillus: 50 years on—progress in industrial microbiology. Volume 29. Elsevier, Amsterdam—London—New York—TokyoGoogle Scholar
  41. Martini CN, Gabrielli M, Brandani JN, Vila Mdel C (2016) Glyphosate inhibits PPAR gamma induction and differentiation of preadipocytes and is able to induce oxidative stress. J Biochem Mol Toxicol 30:404–413CrossRefGoogle Scholar
  42. Mesnage R, Agapito-Tenfen SZ, Vilperte V, Renney G, Ward M, Séralini GE, Nodari RO, Antoniou MN (2016) An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process. Sci Rep 19:37855CrossRefGoogle Scholar
  43. Mesnage R, Bernay B, Séralini GE (2013) Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 313:122–128CrossRefGoogle Scholar
  44. Mesnage R, Defarge N, Spiroux de Vendômois J, Séralini GE (2014) Major pesticides are more toxic to human cells than their declared active principles. Biomed Res Int.
  45. Mesnage R, Defarge N, Spiroux de Vendomois J, Séralini G-E (2015) Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol 84:133–153CrossRefGoogle Scholar
  46. Mesnage R, Renney G, Séralini GE, Ward M, Antoniou MN (2017) Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of Roundup herbicide. Sci Rep 9:39328CrossRefGoogle Scholar
  47. Mottier A, Kientz-Bouchart V, Serpentini A, Lebel JM, Jha AN, Costil K (2013) Effects of glyphosate-based herbicides on embryo-larval development and metamorphosis in the Pacific oyster, Crassostrea gigas. Aquat Toxicol 128-129:67–78CrossRefGoogle Scholar
  48. Murussi CR, Costa MD, Leitemperger JW, Guerra L, Rodrigues CC, Menezes CC, Severo ES, Flores-Lopes F, Salbego J, Loro VL (2016) Exposure to different glyphosate formulations on the oxidative and histological status of Rhamdia quelen. Fish Physiol Biochem 42:445–455CrossRefGoogle Scholar
  49. Navarro RE, Aguirre J (1998) Posttranscriptional control mediates cell type-specific localization of catalase A during Aspergillus nidulans development. J Bacteriol 180:5733–5738Google Scholar
  50. Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21:231–241CrossRefGoogle Scholar
  51. Nicolas V, Oestreicher N, Vélot C (2016) Multiple effects of a commercial Roundup® formulation on the soil filamentous fungus Aspergillus nidulans at low doses: evidence of an unexpected impact on energetic metabolism. Environ Sci Pollut Res 23:14393–14404CrossRefGoogle Scholar
  52. Olorunsogo OO (1990) Modification of the transport of protons and Ca2+ ions across mitochondrial coupling membrane by N-(phosphonomethyl)glycine. Toxicology 61:205–209CrossRefGoogle Scholar
  53. Peixoto F (2005) Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere 61:1115–1122CrossRefGoogle Scholar
  54. Piola L, Fuchs J, Oneto ML, Basack S, Kesten E, Casabé N (2013) Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions. Chemosphere 91:545–551CrossRefGoogle Scholar
  55. Poirier F, Pontet M, Labas V, le Caër JP, Sghiouar-Imam N, Raphaël M, Caron M, Joubert-Caron R (2001) Two-dimensional database of a Burkitt lymphoma cell line (DG 75) proteins: protein pattern changes following treatment with 5′-azycytidine. Electrophoresis 22:1867–1877CrossRefGoogle Scholar
  56. Qiu H, Gen J, Ren H, Xia X, Wang X, Yu Y (2013) Physiological and biochemical responses of Microcystis aeruginosa to glyphosate and its Roundup® formulation. J Hazard Mater 248-249:172–176CrossRefGoogle Scholar
  57. Redkar RJ, Locy RD, Singh (1995) Biosynthetic pathways of glycerol accumulation under salt stress in Aspergillus nidulans. Exp Mycol 19:241–246CrossRefGoogle Scholar
  58. Riechers DE, Wax LM, Liebl RA, Bush DR (1994) Surfactant-increased glyphosate uptake into plasma membrane vesicles isolated from common lambsquarters leaves. Plant Physiol 105:1419–1425CrossRefGoogle Scholar
  59. Sabatier P, Poulenard J, Fanget B, Reyss JL, Develle AL, Wilhelm B, Ployon E, Pignol C, Naffrechoux E, Dorioz JM, Montuelle B, Arnaud F (2014) Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed. Proc Natl Acad Sci U S A 111:15647–15652CrossRefGoogle Scholar
  60. Sacheti P, Patil R, Dube A, Bhonsle H, Thombre D, Marathe S, Vidhate R, Wagh P, Kulkarni M, Rapole S, Gade W (2014) Proteomics of arsenic stress in the gram-positive organism Exiguobacterium sp. PS NCIM 5463. Appl Microbiol Biotechnol 98:6761–6773CrossRefGoogle Scholar
  61. Salvio C, Menone ML, Rafael S, Iturburu FG, Manetti PL (2016) Survival, reproduction, avoidance behavior and oxidative stress biomarkers in the earthworm Octolasion cyaneum exposed to glyphosate. Bull Environ Contam Toxicol 96:14–319CrossRefGoogle Scholar
  62. Sato I, Shimizu M, Hoshino T, Takaya N (2009) The glutathione system of Aspergillus nidulans involves a fungus-specific glutathione S-transferase. J Biol Chem 284:8042–8053CrossRefGoogle Scholar
  63. Scherer M, Wei H, Liese R, Fischer R (2002) Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA. Eukaryot Cell 1:725–735CrossRefGoogle Scholar
  64. Schuurink R, Busink R, Hondmann DH, Witteveen CF, Visser J (1990) Purification and properties of NADP(+)-dependent glycerol dehydrogenases from Aspergillus nidulans and A. niger. J Gen Microbiol 136:1043–1050CrossRefGoogle Scholar
  65. Shimizu M, Fujii T, Masuo S, Fujita K, Takaya N (2009) Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions. Proteomics 9:7–19CrossRefGoogle Scholar
  66. Shimizu M, Fujii T, Masuo S, Takaya N (2010) Mechanism of de novo branched-chain amino acid synthesis as an alternative electron sink in hypoxic Aspergillus nidulans cells. Appl Environ Microbiol 76:1507–1515CrossRefGoogle Scholar
  67. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347:1259855CrossRefGoogle Scholar
  68. Teixeira MC, Santos PM, Fernandes AR, Sá-Correia I (2005) A proteome analysis of the yeast response to the herbicide 2,4-dichlorophenoxyacetic acid. Proteomics 5:1889–1901CrossRefGoogle Scholar
  69. Thornton BJ, Elthon TE, Cerny RL, Siegfried BD (2010) Proteomic analysis of atrazine exposure in Drosophila melanogaster (Diptera: Drosophilidae). Chemosphere 81:235–241CrossRefGoogle Scholar
  70. Wu L, Qiu Z, Zhou Y, Du Y, Liu C, Ye J, Hu X (2016) Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 178:72–79CrossRefGoogle Scholar
  71. Zaller JG, Heigl F, Ruess L, Grabmaier A (2014) Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Sci Rep 4:5634CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Université Paris 13, UFR SMBH, Plateforme PPUP13Bobigny cedexFrance
  2. 2.UMS-IPSIT, US31 Inserm-UMS3679 CNRS, Plateformes Trans-Prot et d’Imagerie Cellulaire, Université Paris-Sud, Faculté de Pharmacie, Tour E1Châtenay-MalabryFrance
  3. 3.Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular GeneticsLondonUK
  4. 4.CRIIGENParisFrance
  5. 5.Laboratoire VEAC, Université Paris-Sud, Faculté des SciencesOrsayFrance
  6. 6.Pôle Risques MRSH-CNRS, Université de Caen, Esplanade de la PaixCaenFrance

Personalised recommendations