Environmental Science and Pollution Research

, Volume 24, Issue 31, pp 24584–24592 | Cite as

Natural manganese ore catalyst for low-temperature selective catalytic reduction of NO with NH3 in coke-oven flue gas

  • Baozhong Zhu
  • Shoulai Yin
  • Yunlan Sun
  • Zicheng Zhu
  • Jiaxin Li
Research Article
  • 170 Downloads

Abstract

Different types of manganese ore raw materials were prepared for use as catalysts, and the effects of different manganese ore raw materials and calcination temperature on the NO conversion were analyzed. The catalysts were characterized by XRF, XRD, BET, XPS, H2-TPR, NH3-TPD, and SEM techniques. The results showed that the NO conversion of calcined manganese ore with a Mn:Fe:Al:Si ratio of 1.51:1.26:0.34:1 at 450 °C reached 80% at 120 °C and 98% at 180~240 °C. The suitable proportions and better dispersibility of active ingredients, larger BET surface area, good reductibility, a lot of acid sites, contents of Mn4+ and Fe3+, and surface-adsorbed oxygen played important roles in improving the NO conversion.

Keywords

Manganese ore Selective catalytic reduction Low temperature NO 

References

  1. Allen GC, Curtis MT, Hooper AJ, Tucker PM (1974) X-ray photoelectron spectroscopy of iron-oxygen systems. J Chem Soc Dalton Trans 14:1525–1530CrossRefGoogle Scholar
  2. Cai S, Hu H, Li HR, Shi L, Zhang D (2016) Design of multi-shell Fe2O3@MnOx@CNTs for the selective catalytic reduction of NO with NH3: improvement of catalytic activity and SO2 tolerance. Nano 8:3588–3598Google Scholar
  3. Cao F, Su S, Xiang J, Wang PY, Hu S, Sun LS, Zhang AC (2015) The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3. Fuel 139:232–239CrossRefGoogle Scholar
  4. Chen WS, Luo J, Qin LB (2015) Selective autocatalytic reduction of NO from sintering flue gas by the hot sintered ore in the presence of NH3. J Environ Mange 164:146–150CrossRefGoogle Scholar
  5. Chen ZH, Wang FR, Li H, Yang Q, Wang LF, Li XH (2011) Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase. Ind Eng Chem Res 51:202–212CrossRefGoogle Scholar
  6. Delahay G, Valade D, Guzmán-Vargas A, Coq B (2005) Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods. Appl Catal B Environ 55:149–155CrossRefGoogle Scholar
  7. Devadas M, Kröcher O, Elsener M, Wokaun A, Mitrikas G, Söger N, Pfeifec M, Demel Y, Mussmann L (2007) Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR. Cataly Today 119:137–144CrossRefGoogle Scholar
  8. Fang C, Zhang D, Cai S, Zhang L, Huang L, Li H, Maitarad P, Shi L, Gao R, Zhang J (2013) Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route. Nano 5:9199–9207Google Scholar
  9. Guo RT, Chen QL, Ding HL, Wang QS, Pan WG, Yang NZ, Lu CZ (2015a) Preparation and characterization of CeOx @ MnOx core-shell structure catalyst for catalytic oxidation of NO. Catal Commun 69:165–169CrossRefGoogle Scholar
  10. Guo RT, Wang QS, Pan WG (2015b) The poisoning effect of heavy metals doping on catalyst for selective catalytic reduction of NO with NH3. J Mol Catal A Chem 407:1–7CrossRefGoogle Scholar
  11. Hanawa T, Hiromoto S, Asami K (2001) Characterization of the surface oxide film of a Co-Cr-Mo alloy after being located in quasi-biological environments using XPS. Appl Surf Sci 183:68–75CrossRefGoogle Scholar
  12. Jiang BQ, Liu Y, Wu ZB (2009) Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods. J Hazard Mater 162:1249–1254CrossRefGoogle Scholar
  13. Liu J, Zhao Z, Wang JQ, Xu CM, Duan AJ, Jiang GY, Yang Q (2008) The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Appl Catal B Environ 84:185–195CrossRefGoogle Scholar
  14. Liu Y, Xu J, Li HR, Cai SX, Hu H, Fang C, Shi LY, Zhang DS (2015) Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NOx catalysts. J Mater Chem A 3:11543–11553CrossRefGoogle Scholar
  15. Li JH, Zhang XL, Chen TH (2010) Characterization and ammonia adsorption-desorption of palygor-skite-supported manganese oxide as a low-temperature selective catalytic reduction catalyst. Chinese J Catal 31:454–460Google Scholar
  16. Li SJ, Wang XX, Tan S, Shi Y, Li W (2015) CrO3 supported on sargassum-based activated carbon as low temperature catalysts for the selective catalytic reduction of NO with NH3. Fuel 160:35–42CrossRefGoogle Scholar
  17. Li Y, Wan Y, Li YP, Zhan SH, Guan QX, Tian Y (2016) Low-temperature selective catalytic reduction of NO with NH3 over Mn2O3-doped Fe2O3 hexagonal microsheets. Acs Appl Mater Inter 8:5224–5233CrossRefGoogle Scholar
  18. Lu WZ, Zhao XG, Wang H, Xiao WD (2000) Catalytic oxidation of NO. Chin J Catal 21:423–427Google Scholar
  19. Min K, Park ED, Ji MK, Yie JE (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A Gen 327:261–269CrossRefGoogle Scholar
  20. Putluru SSR, Schill L, Jensen AD (2015) Mn/TiO2 and Mn-Fe/TiO2 catalysts synthesized by deposition precipitation-promising for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B Environ 165:628–635CrossRefGoogle Scholar
  21. Park TS, Jeong SK, Hong SH, Hong SC (2001) Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature. Ind Eng Chem Res 40:4491–4495CrossRefGoogle Scholar
  22. Roosendaal SJ, Asselen BV, Elsenaar JW, Vredenberg AM, Habraken FHPM (1999) The oxidation state of Fe (100) after initial oxidation in O2. Surf Sci 442:329–337CrossRefGoogle Scholar
  23. Ruan HD, Frost RL, Kloprogge JT (2001) The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochim Acta A Mol Biomol Spectrosc 57:2575–2586CrossRefGoogle Scholar
  24. Schill L, Putluru SSR, Fehrmann R, Jensen AD (2014) Low-temperature NH3-SCR of NO on mesoporous Mn0.6Fe0.4/TiO2 prepared by a hydrothermal method. Catal Lett 144:395–402CrossRefGoogle Scholar
  25. Shen BX, Ma HQ, He C, Zhang XP (2014) Low temperature NH3-SCR over Zr and Ce pillared clay based catalysts. Fuel Process Technol 119:121–129CrossRefGoogle Scholar
  26. Schindler M, Hawthorne FC, Freund MS, Burns PC (2009) XPS spectra of uranyl minerals and synthetic uranyl compounds. II: the O1s spectrum. Geochim Et Cosmochim Ac 73:2471–2487CrossRefGoogle Scholar
  27. Sounak R, Viswanath B, Hegde MS (2008) Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M=Gr, Mn, Fe, Co, Cu). J Phys Chem C 112:6002–6012CrossRefGoogle Scholar
  28. Stanciulescu M, Caravaggio G, Dobri A, Moir J, Burich R, Charland JP, Bulsink P (2012) Low-temperature selective catalytic reduction of NOx with NH3 over Mn-containing catalysts. Appl Catal B Environ 123:229–240CrossRefGoogle Scholar
  29. Strohmeier BR, Leyden DE, Field RS, Hercules DM (1985) Surface spectroscopic characterization of manganese/aluminum oxide catalysts. J Phys Chem 16:4922–4929Google Scholar
  30. Tae SP, Soon KJ, Sung HH, Sung CH (2001) Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature. Ind Eng Chem Res40:4491–4495Google Scholar
  31. Thirupathi B, Smirniotis PG (2012) Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: catalytic evaluation and characterizations. J Catal 288:74–83CrossRefGoogle Scholar
  32. Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y (2012b) Manganese oxides with rod-, wire-, tube-, and flower- like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46:4034–4041CrossRefGoogle Scholar
  33. Wang J, Dong X, Wang Y, Li Y (2015) Effect of the calcination temperature on the performance of a CeMoOx catalyst in the selective catalytic reduction of NOx with ammonia. Catal Today 245:10–15CrossRefGoogle Scholar
  34. Wang XB, Wu SG, Zou WX, Yu SH, Gui KT, Dong L (2016) Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3. Chinese J Catal 37:1314–1323CrossRefGoogle Scholar
  35. Wang L, Huang B, Su Y, Zhou G, Wang K, Luo H, Ye D (2012a) Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: catalytic activity and characterization. Chem Eng J 192:232–241CrossRefGoogle Scholar
  36. Wan YP, Zhao WR, Tang Y, Li L, Wang HJ, Cui YL, Gu GL, Li YS, Shi JL (2014) Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3. Appl Catal B Environ 148:114–122CrossRefGoogle Scholar
  37. Wu Z, Jin R, Liu Y, Wang H (2008) Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal Commun 9:2217–2220CrossRefGoogle Scholar
  38. Yang SJ, Qi FH, Xiong SC, Dang H, Liao Y, Wong PK, Li JH (2016) MnOx supported on Fe-Ti spinel: a novel Mn based low temperature SCR catalyst with a high N2 selectivity. Appl Catal B Environ 181:570–580CrossRefGoogle Scholar
  39. Yang SJ, Wang CZ, Li JH, Yan NQ, Ma L, Chang HZ (2011) Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: performance, mechanism and kinetic study. Appl Catal B Environ 110:71–80CrossRefGoogle Scholar
  40. Zhang R, Li Y, Zhen T (2014) Ammonia selective catalytic reduction of NO over Fe/Cu-SSZ-13. RSC Adv 4:52130–52139CrossRefGoogle Scholar
  41. Zhang W, Shi Y, Li C, Zhao QD, Li XY (2016a) Synthesis of bimetallic MOFs MIL-100(Fe-Mn) as an efficient catalyst for selective catalytic reduction of NOx with NH3. Catal Lett 146:1956–1964CrossRefGoogle Scholar
  42. Zhang W, Shi Y, Li CY, Zhao QD, Li XY (2016b) Synthesis of bimetallic MOFs MIL-100(Fe-Mn) as an efficient catalyst for selective catalytic reduction of NOx with NH3. Catal Lett 146:1956–1964CrossRefGoogle Scholar
  43. Zhang YB, Zheng YY, Wang X, Lu XL (2015b) Preparation of Mn-FeOx/CNTs catalysts by redox co-precipitation and application in low-temperature NO reduction with NH3. Catal Commun 62:57–61CrossRefGoogle Scholar
  44. Zhang YB, Zheng YY, Zou HQ, Zhang X (2015a) One-step synthesis of ternary MnO2-Fe2O3-CeO2-Ce2O3/CNT catalysts for use in low-temperature NO reduction with NH3. Catal Commun 71:46–50CrossRefGoogle Scholar
  45. Zha XB, Liang H, Gui KT, Cai S, Wang R (2015) Study on the performance of iron ore catalysts on SCR of NOx with NH3 at low-temperature. J Eng Thermophys-rus 36:811–815Google Scholar
  46. Zheng YY, Wang X (2014) Research progress on Mn-based catalysts for low-temperature selective catalytic reduction of NOx. J Funct Mater 45:11008–11012Google Scholar
  47. Zhou C, Zhang Y, Wang X, Xu H, Sun K, Shen K (2013) Influence of the addition of transition metals (Cr, Zr, Mo) on the properties of MnOx -FeOx catalysts for low-temperature selective catalytic reduction of NOx by ammonia. J Colloid Interf Sci 392:319–324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Baozhong Zhu
    • 1
  • Shoulai Yin
    • 1
  • Yunlan Sun
    • 1
    • 2
  • Zicheng Zhu
    • 1
  • Jiaxin Li
    • 1
  1. 1.School of Energy and EnvironmentAnhui University of TechnologyMaanshanPeople’s Republic of China
  2. 2.Key Laboratory of Metallurgical Emission Reduction and Resources Recycling, Ministry of EducationAnhui University of TechnologyMaanshanPeople’s Republic of China

Personalised recommendations