Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 5, pp 4037–4050 | Cite as

In vitro tools for the toxicological evaluation of sediments and dredged materials: intra- and inter-laboratory comparisons of chemical and bioanalytical methods

  • Kathrin Eichbaum
  • Markus Brinkmann
  • Leonie Nuesser
  • Carolin Gembé
  • Marina Ohlig
  • Sebastian Buchinger
  • Georg Reifferscheid
  • Markus Hecker
  • John P. Giesy
  • Henner HollertEmail author
Effect-related evaluation of anthropogenic trace substances, -concepts for genotoxicity, neurotoxicity and, endocrine effects

Abstract

The implementation of in vitro bioassays for the screening of dioxin-like compounds (DLCs) into management guidelines of dredged material is of increasing interest to regulators and risk assessors. This study reports on an intra- and inter-laboratory comparison study between four independent laboratories. A bioassay battery consisting of RTL-W1 (7-ethoxy-resorufin-O-deethylase; EROD), H4IIE (micro-EROD), and H4IIE-luc cells was used to assess aryl hydrocarbon receptor-mediated effects of sediments from two major European rivers, differently contaminated with DLCs. Each assay was validated by characterization of its limit of detection (LOD) and quantification (LOQ), z-factor, reproducibility, and repeatability. DLC concentrations were measured using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) and compared to bioassay-specific responses via toxicity equivalents (TEQs) on intra- and inter-laboratory levels. The micro-EROD assay exhibited the best overall performance among the bioassays. It was ranked excellent (z-factor = 0.54), reached a repeatability > 75%, was highly comparable (r 2 = 0.87) and reproducible (83%) between two laboratories, and was well correlated (r 2 = 0.803) with TEQs. Its LOD and LOQ of 0.5 and 0.7 pM 2,3,7,8-TCDD, respectively, approached LOQs of HRGC/HRMS measurements. In contrast, cell lines RTL-W1 and H4IIE-luc produced LODs > 0.7 pM 2,3,7,8-TCDD, LOQs > 1.7 pM 2,3,7,8-TCDD, and repeatability < 70%. Based on the data obtained, the micro-EROD assay is the most favorable bioanalytical tool, and via a micro-EROD-based limit value, it would allow for the assessment of sediment DLC concentrations; thus, it could be considered for the implementation into testing and management guidelines for dredged materials.

Keywords

Biological effect-based assessment BEQ Dredged material management Micro-EROD TEQ 

Notes

Acknowledgements

The present work forms a part of the dioRAMA project (“dioxin Risk Assessment for sediment Management Approaches”), which received funds from the “Title Group 05” of the German Federal Government. M.B. received a personal stipend from the German National Academic Foundation (“Studienstiftung des Deutschen Volkes”) and is currently a Banting postdoctoral fellow of the Natural Sciences and Engineering Research Council of Canada (NSERC). Profs. Dr. Giesy and Hecker were supported by the Canada Research Chair Program. Furthermore, Dr. Giesy was supported by a visiting distinguished professorship in the Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, the 2012 “High Level Foreign Experts” (#GDW20123200120) program, funded by the State Administration of Foreign Experts Affairs, the People’s Republic of China to Nanjing University, and the Einstein Professor Program of the Chinese Academy of Sciences. Prof. Dr. Hollert was supported by the Chinese 111 Program (College of Environmental Science and Engineering and Key Laboratory of Yangtze Water environment, Ministry of Education, Tongji University). Special thanks go to Dr. Stephan Hamm and Dr. Armin Maulshagen from mas (Münster Analytical Solutions GmbH), Münster, Germany for the HRGC/HRMS measurements and their kind contribution to this work.

References

  1. 2000/60/EC (2006) Directive of the European Parliament and Council—on environmental quality standards in the field of water policy and amending Directive 2000/60/ECGoogle Scholar
  2. 2000/60/EG (2009) Bewirtschaftungsplan nach Artikel 13 der Richtlinie 2000/60/EG für den deutschen Teil der Flussgebietseinheit Elbe (FGG Elbe)Google Scholar
  3. 2008/105/EC (2008) Directive of the European Parliament and Council—on environmental quality standards in the field of water policy and amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/ECGoogle Scholar
  4. 2012/252/EU (2012) Commission Regulation (EU) no 252/2012 of 21 March 2012 laying down methods of sampling and analysis for the official control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation EC1883/2006, Off J Eur UnionGoogle Scholar
  5. 2012/278/EU (2012) VERORDNUNG (EU) Nr. 278/2012 DER KOMMISSION vom 28. März 2012 zur Änderung der Verordnung EG152/2009 hinsichtlich der Bestimmung der Gehalte an Dioxinen und polychlorierten BiphenylenGoogle Scholar
  6. Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002) A guidance for the assessment and evaluation of sediment quality a German approach based on ecotoxicological and chemical measurements. J Soils Sediments 2:37–42CrossRefGoogle Scholar
  7. Apitz S, Power E (2002) From risk assessment to sediment management an international perspective. J Soils Sediments 2:61–66CrossRefGoogle Scholar
  8. Barceló D, Petrovic M (eds) (2007) Sustainable management of sediment resources. Sediment quality and impact assessment of pollutants, Vol 1:, AmsterdamGoogle Scholar
  9. Behnisch PA, Hosoe K, Brouwer A, Sakai S (2002) Screening of dioxin-like toxicity equivalents for various matrices with wildtype and recombinant rat hepatoma H4IIE cells. Toxicol Sci 69:125–130CrossRefGoogle Scholar
  10. Besselink HT, Schipper C, Klamer H, Leonards P, Verhaar H, Felzel E, Murk AJ, Thain J, Hosoe K, Schoeters G, Legler J, Brouwer B (2004) Intra- and interlaboratory calibration of the DR CALUX® bioassay for the analysis of dioxins and dioxin-like chemicals in sediments. Environ Toxicol Chem 23:2781–2789CrossRefGoogle Scholar
  11. Breitung V, Keller M (2010) Management von schadstoffbelasteten Feinsedimenten in Bundeswasserstraßen. Umweltwiss Schadst Forsch 22:645–650CrossRefGoogle Scholar
  12. Burton A (ed) (1992) Sediment toxicity assessment. Lewis Publishers, Inc., Chelsea, Chapter 1–3, 15 ppGoogle Scholar
  13. Chapman PM, Hollert H (2006) Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? J Soils Sediments 6:4–8CrossRefGoogle Scholar
  14. Clemons JH, Dixon DG, Bols NC (1997) Derivation of 2,3,7,8-TCDD toxic equivalence factors (TEFs) for selected dioxins, furans and PCBs with rainbow trout and rat liver cell lines and the influence of exposure time. Chemosphere 34:1105–1119CrossRefGoogle Scholar
  15. COM(2011)875 (2011) Report from the Commission to the Eropean Parliament and the Council on the outcome of the review of Annex X to Directive 2000/60/EC of the European Parliament and of the Council on priority substances in the field of water policyGoogle Scholar
  16. den Besten P, de Deckere E, Babut M, Power B, DelValls TA, Zago C, Oen AP, Heise S (2003) Biological effects-based sediment quality in ecological risk assessment for European waters. J Soils Sediments 3:144–162CrossRefGoogle Scholar
  17. Eichbaum K, Brinkmann M, Buchinger S, Reifferscheid G, Hecker M, Giesy JP, Engwall M, van Bavel B, Hollert H (2014) In vitro bioassays for detecting dioxin-like activity—application potentials and limits of detection, a review. Sci Total Environ 487:37–48CrossRefGoogle Scholar
  18. Engwall M, Van Bavel B (2004) The second round of Interlaboratory comparison of dioxin-like compounds in food using bioassays. Man Technology Environment Research Centre, Department of Natural Sciences, Örebro University, Sweden, p 314Google Scholar
  19. Feiler U, Höss S, Ahlf W, Gilberg D, Hammers-Wirtz M, Hollert H, Meller M, Neumann-Hensel H, Ottermanns R, Seiler T-B, Spira D, Heininger P (2013) Sediment contact tests as a tool for the assessment of sediment quality in German waters. Environ Toxicol Chem 32:144–155CrossRefGoogle Scholar
  20. Förstner U, Ahlf W, Calmano W (2008) Entwicklung von Qualitätskriterien für Gewässersedimente. Universitätsbibliothek der Technischen Universität Hamburg-HarburgGoogle Scholar
  21. GÜBAK (2009) Gemeinsame Übergangsbestimmungen zum Umgang mit Baggergut in Küstengewässern GÜBAK-WSVGoogle Scholar
  22. HABAB (2000) Handlungsanweisung für den Umgang mit Baggergut im Binnenland (HABAB-WSV), BfG-1251Google Scholar
  23. HABAK (1999) Handlungsanweisung für den Umgang mit Baggergut im Küstenbereich (HABAK-WSV), BfG-1100Google Scholar
  24. Hallare A, Seiler T-B, Hollert H (2011) The versatile, changing, and advancing roles of fish in sediment toxicity assessment—a review. J Soils Sediments 11:141–173CrossRefGoogle Scholar
  25. Hollert H, Dürr M, Olsman H, Halldin K, van Bavel B, Brack W, Tysklind M, Engwall M, Braunbeck T (2002) Biological and chemical determination of dioxin-like compounds in sediments by means of a sediment triad approach in the catchment area of the River Neckar. Ecotoxicology 11:323–336CrossRefGoogle Scholar
  26. Hollert H, Ernst M, Seiler TB, Wölz J, Braunbeck T, Kosmehl T, Keiter S, Grund S, Ahlf W, Erdinger L, Dürr M (2009) Strategien zur Sedimentbewertung—ein Überblick. Umweltwiss Schadst Forsch 21:160–176CrossRefGoogle Scholar
  27. Höss S, Ahlf W, Fahnenstich C, Gilberg D, Hollert H, Melbye K, Meller M, Hammers-Wirtz M, Heininger P, Neumann-Hensel H, Ottermanns R, Ratte HT, Seiler TB, Spira D, Weber J, Feiler U (2010) Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination—determination of toxicity thresholds. Environ Pollut 158:2999–3010CrossRefGoogle Scholar
  28. ISO/5752 (2002) Guide to the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimationGoogle Scholar
  29. Khim JS, Villeneuve DL, Kannan K, Lee KT, Snyder SA, Koh CH, Giesy JP (1999) Alkylphenols, polycyclic aromatic hydrocarbons, and organochlorines in sediment from Lake Shihwa, Korea: instrumental and bioanalytical characterization. Environ Toxicol Chem 18:2424–2432Google Scholar
  30. LAVES (2013) Mikro-EROD-bioassay zur Bestimmung von Dioxinen und dioxinähnlichen Substanzen (gekürzte Fassung), 03-110-MAA-M-11EROD V4, LAVES (Lower Saxony State Office for Consumer Protection and Food Safety), pp 5Google Scholar
  31. Lee LEJ, Clemons JH, Bechtel DG, Caldwell SJ, Han K-B, Pasitschniak-Arts M, Mosser DD, Bols NC (1993) Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Biol Toxicol 9:279–294CrossRefGoogle Scholar
  32. Lee KT, Hong S, Lee JS, Chung KH, Hilscherová K, Giesy JP, Khim JS (2013) Revised relative potency values for PCDDs, PCDFs, and non-ortho-substituted PCBs for the optimized H4IIE-luc in vitro bioassay. Environ Sci Pollut Res 20:8590–8599CrossRefGoogle Scholar
  33. Lorenzen A, Kennedy SW, Bastien LJ, Hahn ME (1997) Halogenated aromatic hydrocarbon-mediated porphyrin accumulation and induction of cytochrome P4501A in chicken embryo hepatocytes, 53. Elsevier, AmsterdamGoogle Scholar
  34. MacDougall D, Crummett WB (1980) Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal Chem 52:2242–2249CrossRefGoogle Scholar
  35. Manz W, Krebs F, Schipper CA, Den Besten PJ (2007) Status of ecotoxicological assessment of sedient and dredged material in Germany and the Netherlands-Dutch-German exchange (DGE) on dredged materialGoogle Scholar
  36. Otte JC, Keiter S, Faßbender C, Higley EB, Rocha PS, Brinkmann M, Wahrendorf DS, Manz W, Wetzel MA, Braunbeck T, Giesy JP, Hecker M, Hollert H (2013) Contribution of priority PAHs and POPs to Ah receptor-mediated activities in sediment samples from the River Elbe Estuary, Germany. PLoS One 8(10):e75596CrossRefGoogle Scholar
  37. Palmgren JJ, Monkkonen J, Korjamo T, Hassinen A, Auriola S (2006) Drug adsorption to plastic containers and retention of drugs in cultured cells under in vitro conditions. Eur J Pharm Biopharm 64:369–378CrossRefGoogle Scholar
  38. Puga A, Ma C, Marlowe JL (2009) The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol 77:713–722CrossRefGoogle Scholar
  39. Safe SH (1998a) Development validation and problems with the toxic equivalency factor approach for risk assessment of dioxins and related compounds. J Anim Sci 76:134–141CrossRefGoogle Scholar
  40. Safe SH (1998b) Limitations of the toxic equivalency factor approach for risk assessment of TCDD and related compounds. Teratogen Carcin Mut 17:285–304CrossRefGoogle Scholar
  41. Sanderson JT, Aarts JMMJG, Brouwer A, Froese KL, Denison MS, Giesy JP (1996) Comparison of Ah receptor-mediated luciferase and ethoxyresorufin-O-deethylase induction in H4IIE cells: implications for their use as bioanalytical tools for the detection of polyhalogenated aromatic hydrocarbons. Toxicol Appl Pharmacol 137:316–325CrossRefGoogle Scholar
  42. Schiwy A, Brinkmann M, Thiem I, Guder G, Winkens K, Eichbaum K, Nuszer L, Thalmann B, Buchinger S, Reifferscheid G, Seiler T-B, Thoms B, Hollert H (2015) Determination of the CYP1A-inducing potential of single substances, mixtures and extracts of samples in the micro-EROD assay with H4IIE cells. Nat Protocols 10:1728–1741CrossRefGoogle Scholar
  43. Schüttrumpf H, Brinkmann M, Cofalla C, Frings RM, Gerbersdorf SU, Hecker M, Hudjetz S, Kammann U, Lennartz G, Roger S, Schäffer A, Hollert H (2011) A new approach to investigate the interactions between sediment transport and ecotoxicological processes during flood events. Env Sci Eur 23:39CrossRefGoogle Scholar
  44. Stachel B, Mariani G, Umlauf G, Götz R (2011) Dioxine und PCBs in Feststoffen aus der Elbe, ihren Nebenflüssen und der Nordsee (Längsprofilaufnahme 2008)Google Scholar
  45. Umlauf G, Christoph EH, Bidoglio G (2004) Schadstoffuntersuchungen nach dem Hochwasser vom August 2002 – Ermittlung der Gefährdungspotenziale an Elbe und Mulde (Endbericht BMBF-FKZ PJT 0330492). In: Geller W, Ockenfeld K, Boehme M, Knoechel A (eds), ISBN: 3-00-013615-0Google Scholar
  46. US-EPA (1994) Method 8290 - Analysis of polychlorinated dibenzodioxins and poly-chlorinated dibenzofurans by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS)Google Scholar
  47. Van den Berg M, Birnbaum LS, Denison MS, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241CrossRefGoogle Scholar
  48. Wenning RJ, Ingersoll CG (2002) Summary of the SETAC Pellston Workshop on use of sediment quality guidelines and related tools for the assessment of contaminated sediments. 17–22 August 2002, Fairmont, Montana, USA. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola FL, USAGoogle Scholar
  49. White SS, Birnbaum LS (2009) An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. J Environ Sci Heal C 27:197–211CrossRefGoogle Scholar
  50. Willett KL, Gardinali PR, Sericano JL, Wade TL, Safe SH (1997) Characterization of the H4IIE rat hepatoma cell bioassay for evaluation of environmental samples containing polynuclear aromatic hydrocarbons (PAHs). Arch Environ Contam Toxicol 32:442–448CrossRefGoogle Scholar
  51. Wölz J, Borck D, Witt G, Hollert H (2009) Ecotoxicological characterization of sediment cores from the western Baltic Sea (Mecklenburg Bight) using GC–MS and biotests. J Soils Sediments 9:400–410CrossRefGoogle Scholar
  52. Zhang J-H, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73CrossRefGoogle Scholar
  53. Zielke H (2011) Time-related alterations and other confounding factors in direct sediment contact tests, PhD thesis RWTH-Aachen University: pp 216Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Kathrin Eichbaum
    • 1
  • Markus Brinkmann
    • 1
    • 2
  • Leonie Nuesser
    • 1
  • Carolin Gembé
    • 1
  • Marina Ohlig
    • 3
  • Sebastian Buchinger
    • 3
  • Georg Reifferscheid
    • 3
  • Markus Hecker
    • 2
  • John P. Giesy
    • 4
    • 5
    • 6
    • 7
  • Henner Hollert
    • 1
    • 8
    • 9
    • 10
    Email author
  1. 1.Department of Ecosystem Analysis, Institute for Environmental Research, ABBt–Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
  2. 2.School of the Environment and Sustainability and Toxicology CentreUniversity of SaskatchewanSaskatoonCanada
  3. 3.Department G3: Biochemistry, EcotoxicologyFederal Institute of Hydrology (BFG)KoblenzGermany
  4. 4.Department of Veterinary Biomedical Sciences and Toxicology CentreUniversity of SaskatchewanSaskatoonCanada
  5. 5.Department of Zoology and Center for Integrative ToxicologyMichigan State UniversityEast LansingUSA
  6. 6.Department of BiologyHong Kong Baptist UniversityKowloonChina
  7. 7.School of Biological SciencesUniversity of Hong KongHong Kong, SARChina
  8. 8.Key Laboratory of Yangtze River Environment of Education Ministry of China, College of Environmental Science and EngineeringTongji UniversityShanghaiChina
  9. 9.College of Resources and Environmental ScienceChongqing UniversityChongqingChina
  10. 10.School of EnvironmentNanjing UniversityNanjingChina

Personalised recommendations