Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 9254–9264 | Cite as

River biofilm community changes related to pharmaceutical loads emitted by a wastewater treatment plant

  • Teofana Chonova
  • Jérôme Labanowski
  • Benoit Cournoyer
  • Cécile Chardon
  • François Keck
  • Élodie Laurent
  • Leslie Mondamert
  • Valentin Vasselon
  • Laure Wiest
  • Agnès Bouchez
Pharmaceuticals and detergents in hospital and urban wastewater: characterisation and impacts

Abstract

Wastewater treatment plants (WWTP) are the main sources of a broad spectrum of pharmaceuticals found in freshwater ecosystems. These pollutants raise environmental health concerns because of their highly bioactive nature and their chronic releases. Despite this, pharmaceuticals’ effects on aquatic environments are poorly defined. Biofilms represent a major part of the microbial life in rivers and streams. They can drive key metabolic cycles and their organizations reflect exposures to changing chemical, physical, and biological constraints. This study estimated the concentrations, over a 3-year period, of ten pharmaceuticals and five nutrients in a river contaminated by a conventional WWTP fed by urban and hospital wastewaters. Variations in these concentrations were related to biofilm bacterial community dynamics. Rock biofilms had developed over defined periods and were harvested at four locations in the river from the up- and downstream WWTP discharge point. Pharmaceuticals were found in all locations in concentrations ranging from not being detected to 192 ng L−1. Despite the high dilution factor of the WWTP effluents by the receiving river, pharmaceuticals were found more concentrated downstream than upstream the WWTP. Shifts in bacterial community structures linked to the environmental emission of pharmaceuticals were superior to seasonal community changes. A community structure from a site located downstream but close to the WWTP was more strongly associated with high pharmaceutical loads and different from those of biofilm samples from the WWTP upstream or far downstream sites. These latter sites were more strongly associated with high nutrient contents. Low environmental concentrations of pharmaceuticals can thus be transferred from WWTP effluents to a connected stream and induce bacterial aquatic community changes over time.

Keywords

Pharmaceuticals Environmental risk assessment Pollution WWTP effluents Biofilm Molecular fingerprinting Bacterial communities River 

Abbreviations

CHAL

Centre Hospitalier Alpes Léman

CD

Close downstream

CU

Close upstream

CCL

Contaminant candidate List

DGGE

Denaturing gradient gel electrophoresis

FD

Far downstream

FU

Far upstream

FEON

Federal Office of the Environment of Switzerland

GWRC

Global Water Research Coalition

HPLC–MS/MS

High-performance liquid chromatography coupled to a mass spectrometer

HTE

Hospital treated effluents

HWW

Hospital wastewater

MDS

Multidimensional scaling

NSAID

Nonsteroidal anti-inflammatory drugs

PCA

Principal component analysis

RDA

Redundancy analyses

SIPIBEL

Site Pilote de Bellecombe

SPE

Solid-phase extraction

TIN

Total inorganic nitrogen

UTE

Urban treated effluents

UWW

Urban wastewater

WWTP

Wastewater treatment plant

Notes

Acknowledgements

This study was partly funded by Anses project “persist-env” #2012/2/149 of the “Programme Environnement-Santé-Travail” (French Ministers in charge of ecological and environmental issues). This study was part of the SIPIBEL field observatory on hospital’s effluents and urban WWTPs. The work was done in collaboration with V. Lecomte (GRAIE). We thank our institutions for partial funding of this work. We thank B. Montuelle, F. Rimet, R. Sommaruga, and anonymous reviewers for their constructive comments on the manuscript.

References

  1. Agences de l'Eau (2000) Système d'évaluation de la qualité de l'eau des cours d'eau - S.E.Q. Eau (Version 1), Annexe B, grilles de seuils par usage et fonction. Agence de l'Eau Loire-Bretagne. Les études des Agences de l'Eau 64:1–23Google Scholar
  2. Atashgahi S, Aydin R, Dimitrov MR, Sipkema D, Hamonts K, Lahti L, Maphosa F, Kruse T, Saccenti E, Springael D, Dejonghe W, Smidt H (2015) Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. Sci Rep 5(17284):1–13Google Scholar
  3. Aubertheau E, Stalder T, Mondamert L, Ploy MC, Dagot C, Labanowski J (2016) Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance. Sci Total Environ 579:1387–1398CrossRefGoogle Scholar
  4. Barnes K, Kolpin D, Furlong E, Zaugg S, Meyer M, Barber L (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Sci Total Environ, 402, 192–200Google Scholar
  5. Battin TJ, Kaplan LA, Newbold JD, Cheng X, Hansen C (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl Environ Microbiol 69:5443–5452CrossRefGoogle Scholar
  6. Besemer K, Singer G, Hödl I, Battin T (2009) Bacterial community composition of stream biofilms in spatially variable flow environments. Appl Environ Microbiol 75:7189–7195CrossRefGoogle Scholar
  7. Bonnineau C, Guasch H, Proia L, Ricart M, Geiszinger A, Romaní AM, Sabater S (2010) Fluvial biofilms: a pertinent tool to assess β-blockers toxicity. Aquat Toxicol 96:225–233CrossRefGoogle Scholar
  8. Bradley P, Journey C, Button D, Carlisle D, Clark J, Mahler B, Nakagaki N, Qi S, Waite I, VanMetre P (2016) Metformin and other pharmaceuticals widespread in wadeable streams of the southeastern United States. Environ SciTechnol Lett 3:243–249Google Scholar
  9. Chonova T, Keck F, Labanowski J, Montuelle B, Rimet F, Bouchez A (2016) Separate treatment of hospital and urban wastewaters: a real scale comparison of effluents and their effect on microbial communities. Sci Total Environ 542:965–975CrossRefGoogle Scholar
  10. Chonova T, Labanowski J, Bouchez A (2017a) Contribution of hospital effluents to the load of micropollutants in WWTP influents. In: Verlicchi P (ed) Hospital wastewaters – characteristics, management, treatment and environmental risks. The handbook of environmental chemistry. Springer, HeidelbergGoogle Scholar
  11. Chonova T, Lecomte V, Krajewski JL, Bouchez A, Labanowski J, Dagot C, Levi Y, Perrodin Y, Wiest L, Gonzalez-Ospina A, Cornoyer B, Sebastian C (2017b) The SIPIBEL project: treatment of hospital and urban wastewater in a conventional urban wastewater treatment plant. ESPR.  https://doi.org/10.1007/s11356-017-9302-0
  12. Corcoll N, Acuña V, Barceló D, Casellas M, Guasch H, Huerta B, Petrovic M, Ponsatí L, Rodríguez-Mozaz S, Sabater S (2014) Pollution-induced community tolerance to non-steroidal anti-inflammatory drugs (NSAIDs) in fluvial biofilm communities affected by WWTP effluents. Chemosphere 112:185–193CrossRefGoogle Scholar
  13. de Voogt P, Janex-Habibi M-L, Sacher F, Puijker L, Mons M (2009) Development of a common priority list of pharmaceuticals relevant for the water cycle. Water Sci Technol 59:39–46CrossRefGoogle Scholar
  14. Dray S, Dufour A-B, Chessel D (2007) The ade4 package — II: two-table and K-table methods. R News 7:47–52Google Scholar
  15. Drury B, Rosi-Marshall E, Kelly JJ (2013) Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl Environ Microbiol 79:1897–1905CrossRefGoogle Scholar
  16. Environmental Protection Agency U.S. (2012) Water: Contaminant Candidate List 3—CCLGoogle Scholar
  17. European Commision (2013) Directive 2013/39/EU of the European Parliament and of the council of 12 august 2013 amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy (2011/0429 (COD))Google Scholar
  18. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  19. Fono L, Kolodziej E, Sedlak D (2006) Attenuation of wastewater-derived contaminants in an effluent-dominated river. Environ. Sci. Technol. 40:7257–7262CrossRefGoogle Scholar
  20. Gómez M, Herrera S, Solé D, García-Calvo E, Fernández-Alba A (2012) Spatio-temporal evaluation of organic contaminants and their transformation products along a river basin affected by urban, agricultural and industrial pollution. Sci Total Environ 420:134–145CrossRefGoogle Scholar
  21. Gros M, Rodríguez-Mozaz S, Barceló D (2012) Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem spectrometry. J Chromatogr A 1248:104–121CrossRefGoogle Scholar
  22. Gross B, Montgomery-Brown J, Naumann A, Reinhard M (2004) Occurrence and fate of pharmaceuticals and alkylphenol ethoxylate metabolites in an effluent- dominated river and wetland. Environ Toxicol Chem 23:2074–2083CrossRefGoogle Scholar
  23. Huber S, Remberger M, Kaj L, Schlabach M, Jörundsdóttir H, Vester J, Arnórsson M, Mortensen I, Schwartson R, Dam M (2016) A first screening and risk assessment of pharmaceuticals and additives in personal care products in waste water, sludge, recipient water and sediment from Faroe Islands. Iceland and Greenland Sci Total Environ 562:13–25CrossRefGoogle Scholar
  24. Hughes S, Kay P, Brown L (2013) A global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ. Sci. Technol. 47:661–677CrossRefGoogle Scholar
  25. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39:3139–3152CrossRefGoogle Scholar
  26. Kasprzyk-Hordern B, Dinsdale R, Guwy A (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42:3498–3518CrossRefGoogle Scholar
  27. Kay P, Hughes S, Ault J, Ashcroft A, Brown L (2017) Widespread, routine occurrence of pharmaceuticals in sewage effluent, combined sewer over flows and receiving waters. Environ Pollut 220:1447–1455CrossRefGoogle Scholar
  28. Keck F, Lepori F (2012) Can we predict nutrient limitation in streams and rivers? Freshw Biol 57:1410–1421CrossRefGoogle Scholar
  29. Keller VDJ, Williams RJ, Lofthouse C, Johnson AC (2014) Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors. Environ Toxicol Chem 33:447–452CrossRefGoogle Scholar
  30. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges. J Environ Manag 90:2354–2366CrossRefGoogle Scholar
  31. Kunkel U, Radke M (2011) Reactive tracer test to evaluate the fate of pharmaceuticals in rivers. Environ Sci Technol 45:6296–6302CrossRefGoogle Scholar
  32. Larras F, Montuelle B, Rimet F, Chèvre N, Bouchez A (2014) Seasonal shift in the sensitivity of a natural benthic microalgal community to a herbicide mixture: impact on the protective level of thresholds derived from species sensitivity distributions. Ecotoxicology 23:1109–1123CrossRefGoogle Scholar
  33. Lyautey E, Jackson C, Cayrou J, Rols JL, Garabetian F (2005) Bacterial community succession in natural river biofilm assemblages. Microb Ecol 50:589–601CrossRefGoogle Scholar
  34. Managaki S, Murata A, Takada H, Tuyen BC, Chiem NH (2007) Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environ. Sci. Technol. 41:8004–8010CrossRefGoogle Scholar
  35. Monteiro SC, Boxall AB (2010) Occurrence and fate of human pharmaceuticals in the environment. Springer, In Reviews of Environmental Contamination and Toxicology, pp 53–154Google Scholar
  36. Muyzer G, Uitterlinden AG, de Waal EC (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  37. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) Vegan: community ecology package. R package version 2.0–10. http://CRAN.R-project.org/package=vegan
  38. Padhye LP, Yao H, Kungu FT, Huang CH (2014) Year-long evaluation on the occurrence and fate of pharmaceuticals personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res 51:266–276CrossRefGoogle Scholar
  39. Pascault N, Roux S, Artigas J, Pesce S, Leloup J, Tadonleke R, Debroas D, Bouchez A, Humbert J-F (2014) A high-throughput sequencing ecotoxicology study of freshwater bacterial communities and their responses to tebuconazole. FEMS Microbiol Ecol 90:563–574CrossRefGoogle Scholar
  40. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27CrossRefGoogle Scholar
  41. Petrovic M, Sole M, Lopez de Alda MJ, Barcelo D (2002) Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: integration of chemical analysis and biological effects on feral carp. Environ Toxicol Chem 21:2146–2156CrossRefGoogle Scholar
  42. Proia L, Lupini G, Osorio V, Pérez S, Barceló D, Schwartz T, Amalfitano S, Fazi S, Romaní AM, Sabater S (2013a) Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. Chemosphere 92:1126–1135CrossRefGoogle Scholar
  43. Proia L, Osorio V, Soley S, Köck-Schulmeyer M, Pérez S, Barceló D, Romaní AM, Sabater S (2013b) Effects of pesticides and pharmaceuticals on biofilms in a highly impacted river. Environ Pollut 178:220–228CrossRefGoogle Scholar
  44. Radke M, Ulrich H, Wurm C, Kunkel U (2010) Dynamics and attenuation of acidic pharmaceuticals along a river stretch. Environ. Sci. Technol. 44:2968–2974CrossRefGoogle Scholar
  45. Sabater S, Barceló D, De Castro-Català N, Ginebreda A, Kuzmanovic M, Petrovic M, Picó Y, Ponsatí L, Tornés E, Muñoz I (2016) Shared effects of organic microcontaminants and environmental stressors on biofilms and invertebrates in impaired rivers. Environ Pollut 210:303–314CrossRefGoogle Scholar
  46. Sabater S, Guasch H, Roman A, Muñoz I (2002) The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia 469:149–156CrossRefGoogle Scholar
  47. Schauer M, Balague V, Pedros-Alio C, Massana R (2003) Seasonal changes in the taxonomic composition of bacterioplankton in a coastal oligotrophic system. Aquat Microb Ecol 31:163–174CrossRefGoogle Scholar
  48. Sipibel Report 2011-2015, 2016. Effluents hospitaliers et stations d'épuration urbaines: caractérisation, risques et traitabilité – Synthèse des résultats de quatre années de suivi, d’études et de recherche sur le site pilote de Bellecombe. Available at the web site from September 2016: http://www.graie.org/Sipibel/publications.html. (in French)
  49. Tlili A, Bérard A, Roulier J-L, Volat B, Montuelle B (2010) PO43− dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquat Toxicol 98:165–177CrossRefGoogle Scholar
  50. Vasquez M, Lambrianides A, Schneider M, Kümmerer K, Fatta-Kassinos D (2014) Environmental side effects of pharmaceutical cocktails: what we know and what we should know. J Hazard Mater 279:169–189CrossRefGoogle Scholar
  51. Vavrek M (2011) Fossil: palaeoecological and paelaeogeogrpahical analysis tools. Palaeontol Electron 14:16–32Google Scholar
  52. Verlicchi P, Zambello E (2016) Predicted and measured concentrations of pharmaceuticals in hospital effluents. Examination of the strengths and weaknesses of the two approaches through the analysis of a case study Sci Total Environ 565:82–94Google Scholar
  53. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 429:123–155CrossRefGoogle Scholar
  54. Villeneuve A (2008) Effets conjoints de facteurs physiques (lumière et vitesse de courant) et chimiques (pesticides) sur la structure et la composition du périphyton: une approche mutli-échelle. PhD Thesis, Université de Savoie, Chambéry, France, 223 pp.Google Scholar
  55. Villeneuve A, Bouchez A, Montuelle B (2011) In situ interactions between the effects of season, current velocity and pollution on a river biofilm. Freshw Biol 56:2245–2259CrossRefGoogle Scholar
  56. Villeneuve A, Montuelle B, Bouchez A (2010) Influence of slight differences in environmental conditions (light, hydrodynamics) on the structure and function of periphyton. Aquat Sci 72:33–44CrossRefGoogle Scholar
  57. Vorosmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561CrossRefGoogle Scholar
  58. Wakelin SA, Colloff MJ, Kookana RS (2008) Effect of wastewater treatment plant effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. Appl Environ Microbiol 74:2659–2668CrossRefGoogle Scholar
  59. Wiest L, Chonova T, Bergé A, Baudot R, Bessueille-Barbier F, Ayouni-Derouiche L, Vulliet E (2017) Two-year survey of specific hospital wastewater treatment: impact on pharmaceutical discharges. ESPR.  https://doi.org/10.1007/s11356-017-9662-5

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Teofana Chonova
    • 1
    • 2
  • Jérôme Labanowski
    • 3
  • Benoit Cournoyer
    • 4
  • Cécile Chardon
    • 1
  • François Keck
    • 1
  • Élodie Laurent
    • 3
  • Leslie Mondamert
    • 3
  • Valentin Vasselon
    • 1
  • Laure Wiest
    • 5
  • Agnès Bouchez
    • 1
  1. 1.UMR CARRTEL, INRA, USMBThonon-les-BainsFrance
  2. 2.Univ Lyon, INSA Lyon, Laboratoire DEEP, EA 7429Villeurbanne CEDEXFrance
  3. 3.UMR IC2MP 7285, CNRS/Université de Poitiers, ENSIPPoitiers CEDEX 9France
  4. 4.UMR Ecologie Microbienne, CNRS 5557, INRA 1418Université Lyon 1, VetAgro SupMarcy L’EtoileFrance
  5. 5.Univ Lyon, CNRS, Université Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280VilleurbanneFrance

Personalised recommendations