Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10482–10492 | Cite as

ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines

  • Natarajan Sisubalan
  • Vijayan Sri Ramkumar
  • Arivalagan Pugazhendhi
  • Chandrasekaran Karthikeyan
  • Karuppusamy Indira
  • Kasi Gopinath
  • Abdulrahman Syedahamed Haja Hameed
  • Mohamed Hussain Ghouse Basha
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology


In the present scenario, the synthesis and characterization of zinc oxide (ZnO) and cerium oxide (CeO2) nanoparticles (NPs) through biological routes using green reducing agents are quite interesting to explore various biomedical and pharmaceutical applications, particularly for the treatment of cancer. This study was focused on the phytosynthesis of ZnO and CeO2 NPs using the leaf extract of Rubia cordifolia L. The active principles present in the plant extract were liable for rapid reduction of Zn and Ce ions to metallic nanocrystals. ZnO and CeO2 NPs were characterized by UV–visible spectroscopy, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDAX), and photoluminescence (PL) techniques. ZnO and CeO2 NPs were partially agglomerated with a net-like structure. Biomedical activities of ZnO and CeO2 NPs were tested against MG-63 human osteosarcoma cells using MTT and reactive oxygen species (ROS) quantification assays. In treated cells, loss of cell membrane integrity, oxidative stress, and apoptosis was observed and it is well correlated with cellular damage immediately after induction. Overall, this study shed light on the anti-cancer potential of ZnO and CeO2 NPs on MG-63 human osteosarcoma cells through differential ROS production pathways, describing the potential role of greener synthesis.


Green synthesis Rubia cordifolia L. ZnO CeO2 SEM Anti-carcinomal activity 



The authors acknowledge the authorities of Jamal Mohamed College, Tiruchirappalli, Tamil Nadu, India, and UGC, New Delhi (F. no. 39-368/2010(SR)) for providing necessary facilities to carry out this work. One of the authors (VSR) thank the University Grants Commission, New Delhi, India, for the financial support through Dr. D.S. Kothari Post Doctoral Fellowship Scheme (no. F.4-2/2006 (BSR)/BL/13-14/0312, Dt.: 19 May 2014).


  1. Bhuyan R, Saikia CN (2005) Isolation of colour components from native dye-bearing plants in northeastern India. Bioresour Technol 96:363–372CrossRefGoogle Scholar
  2. Chai C, Yang S, Liu Z, Liao M, Chen N (2003) Violet/blue photoluminescence from CeO2 thin film. Chin Sci Bull 48:1198–1200CrossRefGoogle Scholar
  3. Chen MY, Zu XT, Xiang X, Zhang HL (2007) Effects of ion irradiation and annealing on optical and structural properties of CeO2 films on sapphire. Physica B: Condens Matter 389:263–268CrossRefGoogle Scholar
  4. Choudhury B, Choudhury A (2012) Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticle. Mater Chem Phys 131:666–671CrossRefGoogle Scholar
  5. Chowdhury S, Yusof F, Salim WWAW, Sulaiman N, Faruck MO (2016) An overview of drug delivery vehicles for cancer treatment: nanocarriers and nanoparticles including photovoltaic nanoparticles. J Photochem Photobiol 164:151–159CrossRefGoogle Scholar
  6. Divakar K, Pawar AT, Chandrasekhar SB et al (2010) Protective effect of the hydro-alcoholic extract of Rubia cordifolia roots against ethylene glycol induced urolithiasis in rats. Food Chem Toxicol 48:1013–1018CrossRefGoogle Scholar
  7. Ethiraj AS, Jayanthi S, Ramalingam C, Banerjee C (2016) Control of size and antimicrobial activity of green synthesized silver nanoparticles. Mater Lett 185:526–529CrossRefGoogle Scholar
  8. Fan XM, Lian JS, Guo ZX, Lu HJ (2005) Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(1 1 1) substrates. Appl Surf Sci 239:176–181CrossRefGoogle Scholar
  9. Fathima JB, Pugazhendhi A, Venis R (2017) Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog 110:245–251CrossRefGoogle Scholar
  10. Godinho M, Ribeiro C, Longo E, Leite ER (2008) Influence of microwave heating on the growth of gadolinium-doped cerium oxide nanorods. Cryst Growth Des 8:384–386CrossRefGoogle Scholar
  11. Hameed ASH, Karthikeyan C, Sasikumar S, Kumar VS, Kumaresan S, Ravi G (2013) Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. J Mater Chem B 1:5950–5962CrossRefGoogle Scholar
  12. Jalal R, Goharshadia EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys 121:198–201CrossRefGoogle Scholar
  13. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KVB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta Mol Biomol Spectrosc 90:78–84CrossRefGoogle Scholar
  14. Kadziński M, Cinelli M, Ciomek K, Coles SR, Nadagouda MN, Varma RS, Kirwan K (2016) Co-constructive development of a green chemistry-based model for the assessment of nanoparticles synthesis. Eur J Oper Res.
  15. Karnan T, Selvakumar SAS (2016) Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct 1125:358–365CrossRefGoogle Scholar
  16. Khodke AS, Potale LV, Patole SM, Damle MC (2010) A validated isocratic RP-HPLC method determination for Rubiadin in the roots of Rubia cordifolia Linn. IntJ ChemTech Res 2(4):1956–1958Google Scholar
  17. Kumar N, Dorfman A, Hahm J (2005) Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts. J Nanosci Nanotechnol 5:1915–1918CrossRefGoogle Scholar
  18. Lebaschi S, Hekmati M, Veisi H (2017) Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions. J Colloid Interface Sci 485:223–231CrossRefGoogle Scholar
  19. Lee JS, Kim S (2007) Synthesis and characterization of Ce1−xGdxO2−δ nanorods. J Am Ceram Soc 90:661–663CrossRefGoogle Scholar
  20. Liu Y, Yang S, Zhang Y, Bao D (2009) Influence of annealing temperature on structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol–gel method. J Magn Mater 321:3406–3410CrossRefGoogle Scholar
  21. Liu Z, Kiessling F, Gätjens J (2010) Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications. J Nanomater 2010:e894303Google Scholar
  22. Mochizuki S, Fujishiro F (2009) The photoluminescence properties and reversible photoinduced spectral change of CeO2 bulk, film and nanocrystals. Phys Stat Sol (B) 246:2320–2328CrossRefGoogle Scholar
  23. Mullins DR, Overbury SH, Huntley DR (1998) Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf Sci 409:307–319CrossRefGoogle Scholar
  24. Nagajyothi PC, Muthuraman P, Sreekanth TVM et al (2017) Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 10:215–225CrossRefGoogle Scholar
  25. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  26. Phoka S, Laokul P, Swatsitang E, Promarak V, Seraphin S, Maensiri S (2009) Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Mater Chem Phys 115:423–428CrossRefGoogle Scholar
  27. Ramkumar VS, Pugazhendhi A, Prakash S et al (2017) Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed Pharmacother 92:479–490CrossRefGoogle Scholar
  28. Rani N, Goel A, Bhardwaj MK (2014) A case study on Rubia cordifolia in film coating of Triphala guggle ayurvedic tablets. Int J Pharm Sci Res 5:2927Google Scholar
  29. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7:1063–1077CrossRefGoogle Scholar
  30. Saratale GD, Saratale RG, Benelli G et al (2017) Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J Clust Sci 28:1709–1727CrossRefGoogle Scholar
  31. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100Google Scholar
  32. Seigneuric R, Markey L, Nuyten DSA et al (2010) From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med 10:640–652CrossRefGoogle Scholar
  33. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293CrossRefGoogle Scholar
  34. Shankar PD, Shobana S, Karuppusamy I, Pugazhendhi A, Ramkumar VS, Arvindnarayan S, Kumar G (2016) A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications. Enzym Microb Technol 95:28–44CrossRefGoogle Scholar
  35. Shanmuganathan R, MubarakAli D, Prabakar D, et al (2017) An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res 1–9.
  36. Sharma SK, Pujari PK, Sudarshan K, Dutta D, Mahapatra M, Godbole SV, Jayakumar OD, Tyagi AK (2009) Positron annihilation studies in ZnO nanoparticles. Solid State Commun 149:550–554CrossRefGoogle Scholar
  37. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870CrossRefGoogle Scholar
  38. Sharma D, Sabela MI, Kanchi S, Mdluli PS, Singh G, Stenström TA, Bisetty K (2016) Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J Photochem Photobiol 162:199–207CrossRefGoogle Scholar
  39. Singh AK, Tripathi YB, Pandey N, Singh DP, Tripathi D, Srivastava ON (2013) Enhanced antilipopolysaccharide (LPS) induced changes in macrophage functions by Rubia cordifolia (RC) embedded with Au nanoparticles. Free Radic Biol Med 65:217–223CrossRefGoogle Scholar
  40. de Souza Oliveira RC, Corrêa RJ, Teixeira RSP, Queiroz DD, da Silva Souza R, Garden SJ, de Lucas NC, Pereira MD, Bello Forero JS, Romani EC, Ribeiro ES (2016) Silica nanoparticles doped with anthraquinone for lung cancer phototherapy. J Photochem Photobiol 165:1–9CrossRefGoogle Scholar
  41. Srivastava P, Kowshik M (2016) Anti-neoplastic selenium nanoparticles from Idiomarina sp. PR58–8. Enzym Microb Technol 95:192–200CrossRefGoogle Scholar
  42. Subba Rao Y, Kotakadi VS, Prasad TNVKV, Reddy AV, Sai Gopal DVR (2013) Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim Acta Mol Biomol Spectrosc 103:156–159CrossRefGoogle Scholar
  43. Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ, Rodriguez MA, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nat Mater 2:821–826CrossRefGoogle Scholar
  44. Tsunekawa S, Fukuda T, Kasuya A (2000) X-ray photoelectron spectroscopy of monodisperse CeO2−x nanoparticles. Surf Sci 457:L437–L440CrossRefGoogle Scholar
  45. Varghese N, Panchakarla LS, Hanapi M, Govindaraj A, Rao CNR (2007) Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO. Mater Res Bull 42:2117–2124CrossRefGoogle Scholar
  46. Vercaemst R, Poelman D, Van Meirhaeghe RL, Fiermans L, Laflere WH, Cardon F (1995) An XPS study of the dopants’ valence states and the composition of CaS1 − xSex: Eu and Sr1 − xSex: Ce thin film electroluminescent devices. J Lumin 63:19–30CrossRefGoogle Scholar
  47. Verma A, Kumar B, Alam P et al (2016) Rubia cordifolia-a review on pharmaconosy and phytochemistry. Int J Pharm Sci Res 7:2720–2731Google Scholar
  48. Vijayan SR, Santhiyagu P, Ramasamy R, Arivalagan P, Kumar G, Ethiraj K, Ramaswamy BR (2016) Seaweeds: a resource for marine bionanotechnology. Enzym Microb Technol 95:45–57CrossRefGoogle Scholar
  49. Wang L, Ren J, Liu X, Lu G, Wang Y (2011) Evolution of SnO2 nanoparticles into 3D nanoflowers through crystal growth in aqueous solution and its optical properties. Mater Chem Phys 127:114–119CrossRefGoogle Scholar
  50. Wei Y, Fang Z, Zheng L, Tan L, Tsang EP (2016) Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts. Mater Lett 185:384–386CrossRefGoogle Scholar
  51. Xingfu Z, Zhaolin H, Yiqun F, Su C, Weiping D, Nanping X (2008) Microspheric organization of multilayered ZnO nanosheets with hierarchically porous structures. J Phys Chem C 112:11722–11728CrossRefGoogle Scholar
  52. Yang DS, Lao C, Zewail AH (2008) 4D electron diffraction reveals correlated unidirectional behavior in zinc oxide nanowires. Science 321:1660–1664CrossRefGoogle Scholar
  53. Yang X, Pan H, Wang P, Zhao FJ (2017) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. J Hazard Mater 322:292–300CrossRefGoogle Scholar
  54. Zhang D, Fu H, Shi L, Pan C, Li Q, Chu Y, Yu W (2007) Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorg Chem 46:2446–2451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Natarajan Sisubalan
    • 1
  • Vijayan Sri Ramkumar
    • 2
  • Arivalagan Pugazhendhi
    • 3
  • Chandrasekaran Karthikeyan
    • 4
  • Karuppusamy Indira
    • 5
  • Kasi Gopinath
    • 6
  • Abdulrahman Syedahamed Haja Hameed
    • 4
  • Mohamed Hussain Ghouse Basha
    • 1
  1. 1.Department of Botany, Jamal Mohamed CollegeAffiliated to Bharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of Environmental BiotechnologyBharathidasan UniversityTiruchirappalliIndia
  3. 3.Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Department of Physics, Jamal Mohamed CollegeAffiliated to Bharathidasan UniversityTiruchirappalliIndia
  5. 5.Research Centre for Strategic Materials (RCSM), Corrosion Resistant Steel GroupNational Institute for Materials Science (NIMS)TsukubaJapan
  6. 6.Department of BotanyBharathiar UniversityCoimbatoreIndia

Personalised recommendations