Skip to main content

Advertisement

Log in

Beneficial effects of quercetin on titanium dioxide nanoparticles induced spermatogenesis defects in mice

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Many recent studies have demonstrated that most nanoparticles (NPs) have an adverse or toxic action on male germ cells. In present study, protective effect of quercetin (Que) on titanium dioxide nanoparticle (NTiO2)-induced spermatogenesis defects in mice was investigated. Thirty-two Naval Medical Research Institute (NMRI) mice were randomly divided into four groups. Que group received 75 mg/kg of Que for 42 days. NTiO2 group received 300 mg/kg NTiO2 for 35 days. NTiO2 + Que group initially received 75 mg/kg Que for 7 days and was followed by concomitant administration of 300 mg/kg NTiO2 for 35 days. Control group received only normal saline for 42 days. Sperm parameters, testosterone concentration, histological criteria, and apoptotic index were assessed. Product of lipid peroxidation (MDA), superoxide dismutase (SOD), and catalase (CAT) activities were also evaluated for oxidative stress in testicular tissue. Administration of NTiO2 significantly induced histological changes in testicular tissue; increased apoptotic index; and decreased testicular weight, testosterone concentration, and sperm quality (p < 0.01). In the testis, NTiO2 increased oxidative stress through an increase in lipid peroxidation and a decrease in SOD and CAT activities (p < 0.05). Que pretreatment could significantly attenuate testicular weight; apoptotic index; and histological criteria including vacuolization, detachment, and sloughing of germ cells in seminiferous tubules. Serum and tissue testosterone levels were significantly increased in Que-pretreated mice (p < 0.01). Sperm parameters including sperm number, motility, and percentage of abnormality were also effectively improved by Que pretreatment (p < 0.01). Pretreatment of Que significantly ameliorated oxidative stress and increased the activities of SOD and CAT in testicular tissue. These results indicate that sperm production can be increased by Que pretreatment in NTiO2-intoxicated mice. The improved sperm quality and reverse testis histology by Que pretreatment may be a consequence of elevation testosterone concentration, reduction in germ cell apoptosis, and suppression of oxidative stress in testicular tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abarikwu SO, Pant AB, Farombi EO (2012) Dietary antioxidant, quercetin, protects Sertoli-germ cell coculture from atrazine-induced oxidative damage. J Biochem Mol Toxicol 26:477–485. doi:10.1002/jbt.21449

    Article  CAS  Google Scholar 

  • Abd-Ellah MF, Aly H, Mokhlis H, Abdel-Aziz AH (2016) Quercetin attenuates di-(2-ethylhexyl) phthalate-induced testicular toxicity in adult rats. Hum Exp Toxicol 35:232–243. doi:10.1177/0960327115580602

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  • Aguirre L, Arias N, Macarulla MT, Gracia A, Portillo MP (2011) Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J 4:189–198. doi:10.2174/1876396001104010189

    Article  CAS  Google Scholar 

  • Aherne SA, O’Brien NM (2000) Lack of effect of the flavonoids, myricetin, quercetin, and rutin, on repair of H2O2-induced DNA single-strand breaks in Caco-2, HepG2, and V79 cells. Nutr Cancer 38:106–115. doi:10.1207/S15327914NC381

    Article  CAS  Google Scholar 

  • Aldemir M, Okulu E, Kösemehmetoğlu K, Ener K, Topal F, Evirgen O, Gürleyik E, Avcı A (2014) Evaluation of the protective effect of quercetin against cisplatin-induced renal and testis tissue damage and sperm parameters in rats. Andrologia 46:1089–1097. doi:10.1111/and.12197

    Article  CAS  Google Scholar 

  • Anderson D, Dobrzyńska MM, Başaran N, Başaran A, Yu T (1998) Flavonoids modulate comet assay responses to food mutagens in human lymphocytes and sperm. Mutat Res 402:269–277. doi:10.1016/S0027-5107(97)00306-0

    Article  CAS  Google Scholar 

  • Bakare AA, Udoakang AJ, Anifowoshe AT, Fadoju OM, Ogunsuyi OI, Alabi OA, Alimba CG, Oyeyemi IT (2016) Genotoxicity of titanium dioxide nanoparticles using the mouse bone marrow micronucleus and sperm morphology assays. J Pollut Eff Cont 4:1–7. doi:10.4172/2375-4397.1000156

    Google Scholar 

  • Baltaci BB, Uygur R, Caglar V, Aktas C, Aydin M, Ozen OA (2016) Protective effects of quercetin against arsenic-induced testicular damage in rats. Andrologia. doi:10.1111/and.12561

    Google Scholar 

  • Bharti S, Misro MM, Rai U (2014) Quercetin supplementation restores testicular function and augments germ cell survival in the estrogenized rats. Mol Cell Endocrinol 383:10–20. doi:10.1016/j.mce.2013.11.021

    Article  CAS  Google Scholar 

  • Biswas P, Wu CY (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746. doi:10.1080/10473289.2005.10464656

    Article  CAS  Google Scholar 

  • Blanco-Rodríguez J, Martinez-Garcia C (1998) Apoptosis precedes detachment of germ cells from the seminiferous epithelium after hormone suppression by short-term oestradiol treatment of rats. Int J Androl 21:109–115. doi:10.1046/j.1365-2605.1998.00109.x

    Article  Google Scholar 

  • Boekelheide K, Fleming SL, Johnson KJ, Patel SR, Schoenfeld HA (2000) Role of Sertoli cells in injury-associated testicular germ cell apoptosis. Exp Biol Med 225:105–115

    Article  CAS  Google Scholar 

  • Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ, Hussain SM, Hofmann MC (2010) Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 116:577–589. doi:10.1093/toxsci/kfq148

    Article  CAS  Google Scholar 

  • Bruce WR, Furrer R, Wyrobek AJ (1974) Abnormalities in the shape of murine sperm after acute testicular x-irradiation. Mutat Res 23:381–386

    Article  CAS  Google Scholar 

  • Bu T, Mi Y, Zeng W, Zhang C (2011) Protective effect of quercetin on cadmium-induced oxidative toxicity on germ cells in male mice. Anat Rec 294:520–526. doi:10.1002/ar.21317

    Article  CAS  Google Scholar 

  • Bu T, Jia Y, Lin J, Mi Y, Zhang C (2012) Alleviative effect of quercetin on germ cells intoxicated by 3-methyl-4-nitrophenol from diesel exhaust particles. J Zhejiang Univ Sci B 13:318–326. doi:10.1631/jzus.B1100318

    Article  CAS  Google Scholar 

  • Cameron DF, Muffly KE (1991) Hormonal regulation of spermatid binding to Sertoli cells in vitro. J Cell Sci 100:523–533

    Google Scholar 

  • Cheng CY, Mruk DD (2002) Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev 82:825–874. doi:10.1152/physrev.00009.2002

    Article  CAS  Google Scholar 

  • Ciftci O, Aydin M, Ozdemir I, Vardi N (2012) Quercetin prevents 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced testicular damage in rats. Andrologia 44:164–173. doi:10.1111/j.1439-0272.2010.01126.x

    Article  CAS  Google Scholar 

  • Davis JM, Murphy EA, Carmichael MD (2009) Effects of the dietary flavonoid quercetin upon performance and health. Curr Sports Med Rep 8:206–213. doi:10.1249/JSR.0b013e3181ae8959

    Article  Google Scholar 

  • Desroches NK, McNiven MK, Foote KD, Richardson GF (2005) The effect of blueberry extracts and quercetin on capacitation status of stored boar sperm cell preservation technology. Fall 3:165–168

    CAS  Google Scholar 

  • Ema M, Kobayashi N, Naya M, Hanai S, Nakanishi J (2010) Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 30:343–352. doi:10.1016/j.reprotox.2010.06.002

    Article  CAS  Google Scholar 

  • Fabiani R, de Bartolomeo A, Rosignoli P, Morozzi G (2001) Antioxidants prevent the lymphocyte DNA damage induced by PMA-stimulated monocytes. Nutr Cancer 39:284–291. doi:10.1207/S15327914nc392

    Article  CAS  Google Scholar 

  • Farombi EO, Abarikwu SO, Adesiyan AC, Oyejola TO (2013) Quercetin exacerbates the effects of subacute treatment of atrazine on reproductive tissue antioxidant defence system, lipid peroxidation and sperm quality in rats. Andrologia 45:256–265. doi:10.1111/and.12001

    Article  CAS  Google Scholar 

  • Franca LR, Ghosh S, Ye SJ, Russell LD (1993) Surface and surface to volume relationships of the Sertoli cells during the cycle of the seminiferous epithelium in the rat. Biol Reprod 49:1215–1228. doi:10.1095/biolreprod49.6.1215

    Article  Google Scholar 

  • Gao GD, Ze YG, Li B, Zhao XY, Liu XR, Sheng L, Hu RP, Gui SX, Sang XZ, Sun QQ, Cheng J, Cheng Z, Wang L, Tang M, Hong FS (2012) The ovarian dysfunction and its gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. J Hazard Mater 243:19–27. doi:10.1016/j.jhazmat.2012.08.049

    Article  CAS  Google Scholar 

  • Gao GD, Ze YG, Zhao XY, Sang XZ, Zheng L, Ze X, Gui SX, Sheng L, Sun QQ, Hong J, Yu XH, Wang L, Hong FS, Zhang XG (2013) Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice. J Hazard Mater 258:133–143. doi:10.1016/j.jhazmat.2013.04.046

    Article  Google Scholar 

  • Giri S, Prasad SB, Giri A, Sharma GD (2002) Genotoxic effects of malathion: an organophosphorus insecticide, using three mammalian bioassays in vivo. Mutat Res 514:223–231. doi:10.1016/S1383-5718(01)00341-2

    Article  CAS  Google Scholar 

  • Goodson SG, Zhang Z, Tsuruta JK, Wang W, O’Brien DA (2011) Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol Reprod 84:1207–1215. doi:10.1095/biolreprod.110.088989

    Article  CAS  Google Scholar 

  • Habertand R, Picon R (1982) Control of testicular steroidogenesis in foetal rat: effect of decapitation on testosterone and plasma luteinizing hormone-like activity. Acta Endocrinol 99:466–473. doi:10.1530/acta.0.0990466

    Google Scholar 

  • Hajshafiha M, Ghareaghaji R, Salemi S, Sadegh-Asadi N, Sadeghi-Bazargani H (2013) Association of body mass index with some fertility markers among male partners of infertile couples. Int J Gen Med 6:447–451. doi:10.2147/IJGM.S41341

    Google Scholar 

  • Hess RA, Chen PP (1992) Computer of germ cells in the cycle of the seminiferous epithelium and prediction of changes in the cycle duration in animals commonly used in reproductive biology and toxicology. J Androl 13:185–190. doi:10.1002/j.1939-4640.1992.tb00297.x

    CAS  Google Scholar 

  • Hong F, Zhao X, Chen M, Zhou Y, Ze Y, Wang L, Wang Y, Ge Y, Zhang Q, Ye L (2016) TiO2 nanoparticles-induced apoptosis of primary cultured Sertoli cells of mice. J Biomed Mater Res A 104:124–135. doi:10.1002/jbm.a.35548

    Article  Google Scholar 

  • Horváthová K, Chalupa I, Šebová L, Tóthová D, Vachálková A (2005) Protective effect of quercetin and luteolin in human melanoma HMB-2 cells. Mutat Res 565:105–112. doi:10.1016/j.mrgentox.2004.08.013

    Article  Google Scholar 

  • Hu J, Yu Q, Zhao F, Ji J, Jiang Z, Chen X, Gao P, Ren Y, Shao S, Zhang L, Yan M (2015) Protection of quercetin against triptolide-induced apoptosis by suppressing oxidative stress in rat Leydig cells. Chem Biol Interact 240:38–46. doi:10.1016/j.cbi.2015.08.004

    Article  CAS  Google Scholar 

  • Huerta-García E, Pérez-Arizti JA, Márquez-Ramírez SG, Delgado-Buenrostro NL, Chirino YI, Iglesias GG, López-Marure R (2014) Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radic Biol Med 73:84–94. doi:10.1016/j

    Article  Google Scholar 

  • Jahan S, Ain QU, Ullah H (2016) Therapeutic effects of quercetin against bisphenol A induced testicular damage in male Sprague Dawley rats. Syst Biol Reprod Med 62:114–124. doi:10.3109/19396368.2015.1115139

    Article  CAS  Google Scholar 

  • Jarow JP, Chen H, Rosner TW, Trentacoste S, Zirkint BR (2001) Assessment of the androgen environment within the human testis: minimally invasive method to obtain intratesticular fluid. J Androl 22:640–645. doi:10.1002/j.1939-4640.2001.tb02224.x

    CAS  Google Scholar 

  • Kang SJ, Kim BM, Lee YJ, Hong SH, Chung HW (2009) Titanium dioxide nanoparticles induce apoptosis through the JNK/p38-caspase-8-bid pathway in phytohemagglutinin-stimulated human lymphocytes. Biochem Biophys Res Commun 386:682–687. doi:10.1016/j.bbrc.2009.06.097

    Article  CAS  Google Scholar 

  • Khaki A, Heidari M, Ghaffari Novin M, Khaki AA (2008) Adverse effects of ciprofloxacin on testis apoptosis and sperm parameters in rats. Iran J Reprod Med 6:71–76

    Google Scholar 

  • Khaki A, Fathiazad F, Nouri M, Khaki A, Maleki NA, Khamnei HJ, Ahmadi P (2010) Beneficial effects of quercetin on sperm parameters in streptozotocin-induced diabetic male rats. Phytother Res 24:1285–1291. doi:10.1002/ptr.3100

    Article  CAS  Google Scholar 

  • Khanduja KL, Verma A, Bhardwaj A (2001) Impairment of human sperm motility and viability by quercetin is independent of lipid peroxidation. Andrologia 33:277–281. doi:10.1046/j.1439-0272.2001.00432.x

    Article  CAS  Google Scholar 

  • Khani B, Rabbani Bidgoli S, Moattar F, Hassani H (2013) Effect of sesame on sperm quality of infertile men. J Res Med Sci 18:184–187

    Google Scholar 

  • Khorsandi LS, Hashemitabar M, Orazizadeh M, Albughobeish N (2008) Dexamethasone effects on FAS ligand expression in mouse testicular germ cells. Pak J Biol Sci 11:2231–2236. doi:10.3923/pjbs.2008.2231.2236

    Article  CAS  Google Scholar 

  • Komatsu T, Tabata M, Kubo-Irie M, Shimizu T, Suzuki K, Nihei Y et al (2008) The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicol in Vitro 22:1825–1831. doi:10.1016/j.tiv.2008.08.009

    Article  CAS  Google Scholar 

  • Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50:1–6. doi:10.1539/joh.50.1

    Article  Google Scholar 

  • Lamson DW, Brignall MS (2000) Antioxidants and cancer, part 3: quercetin. Altern Med Rev 5:196–208

    CAS  Google Scholar 

  • Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, inflammation and immunity. Nutrients 8:167. doi:10.3390/nu8030167

    Article  Google Scholar 

  • Mansouri E, Panahi M, Ghaffari MA, Ghorbani A (2010) Effects of grape seed proanthocyanidin extract on oxidative stress induced by diabetes in rat kidney. Iran Biomed J 15:100–106. doi:10.22038/ijbms.2014.2932

    Google Scholar 

  • Mansouri E, Khorsandi L, Zare Moaiedi M (2015) Grape seed proanthocyanidin extract improved some of biochemical parameters and antioxidant disturbances of red blood cells in diabetic rats. Iran J Pharm Res 14:329–334

    CAS  Google Scholar 

  • Meena R, Kajal K, Paulraj R (2015) Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male Wistar rat. Appl Biochem Biotechnol 175:825–840. doi:10.1007/s12010-014-1299-y

    Article  CAS  Google Scholar 

  • Mirhoseini M, Mohamadpour M, Khorsandi L (2012) Toxic effects of Carthamus tinctorius L. (safflower) extract on mouse spermatogenesis. J Assist Reprod Genet 29:457–461. doi:10.1007/s10815-012-9734-x

    Article  Google Scholar 

  • Morishita Y, Yoshioka Y, Satoh H, Nojiri N, Nagano K, Abe Y, Kamada H, Tsunoda S, Nabeshi H, Yoshikawa T, Tsutsumi Y (2012) Distribution and histologic effects of intravenously administered amorphous nanosilica particles in the testes of mice. Biochem Biophys Res Commun 420:297–301. doi:10.1016/j.bbrc.2012.02.153

    Article  CAS  Google Scholar 

  • Muller J, Decordier I, Hoet P, Lombaert N, Thomassen L, Huaux F, Lison D, Kirsch-Volders M (2008) Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinigenesis 29:427–433. doi:10.1093/carcin/bgm243

    Article  CAS  Google Scholar 

  • Narayana K, D’Souza UJ, Seetharama Rao KP (2002) Ribavirin-induced sperm shape abnormalities in Wistar rat. Mutat Res 513:193–196. doi:10.1016/S1383-5718(01)00308-4

    Article  CAS  Google Scholar 

  • Orazizadeh M, Khorsandi L, Absalan F, Hashemitabar M, Daneshi E (2014a) Effect of beta-carotene on titanium oxide nanoparticles-induced testicular toxicity in mice. J Assist Reprod Genet 31:561–568. doi:10.1007/s10815-014-0184-5

    Article  Google Scholar 

  • Orazizadeh M, Fakhredini F, Mansouri E, Khorsandi L (2014b) Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxicity in rats. Chem Biol Interact 220:214–221. doi:10.1016/j.cbi.2014.07.001

    Article  CAS  Google Scholar 

  • Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229. doi:10.1016/j.toxlet.2008.06.869

    Article  CAS  Google Scholar 

  • Patlolla A, Patra P, Flountan M, Tchounwou P (2016) Cytogenetic evaluation of functionalized single-walled carbon nanotube in mice bone marrow cells. Environ Toxicol 31:1091–1102. doi:10.1002/tox.22118

    Article  CAS  Google Scholar 

  • Russell L, Griswold M (1995) Sertoli cell toxicants. In: Russell L, Griswold M (eds) The Sertoli cell. Cache River, Florida

    Google Scholar 

  • Saber TM, Abd El-Aziz RM, Ali HA (2016) Quercetin mitigates fenitrothion-induced testicular toxicity in rats. Andrologia 48:491–500. doi:10.1111/and.12467

    Article  CAS  Google Scholar 

  • Sha B, Gao W, Wang S, Gou X, Li W, Liang X, Qu Z, Xu F, Lu TJ (2014) Oxidative stress increased hepatotoxicity induced by nano-titanium dioxide in BRL-3A cells and Sprague-Dawley rats. J Appl Toxicol 3:345–356. doi:10.1002/jat.2900

    Article  Google Scholar 

  • Smith LB, Walker WH (2014) The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 2–13. doi:10.1016/j.semcdb.2014.02.012

  • Suttle NF (1998) Copper deficiency in ruminants recent developments. Vet Rec 119:519–522. doi:10.1136/vr.119.21.519

    Article  Google Scholar 

  • Taepongsorat L, Tangpraprutgul P, Kitana N, Malaivijitnond S (2008) Stimulating effects of quercetin on sperm quality and reproductive organs in adult male rats. Asian J Androl 10:249–258. doi:10.1111/j.1745-7262.2008.00306.x

    Article  CAS  Google Scholar 

  • Takeda K, Suzuki K, Ishihara A (2009) Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health 55:95–102

    CAS  Google Scholar 

  • Talebi AR, Khorsandi L, Moridian M (2013) The effect of zinc oxide nanoparticles on mouse spermatogenesis. J Assist Reprod Genet 30:1203–1209. doi:10.1007/s10815-013-0078-y

    Article  Google Scholar 

  • Trejo R, Valadéz-Salazar A, Delhumeau G (1995) Effects of quercetin on rat testis aerobic glycolysis. Can J Physiol Pharmacol 73:1605–1615

    Article  CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250. doi:10.1021/es204168d

    Article  CAS  Google Scholar 

  • Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B (2013) Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS One 8:e70618. doi:10.1371/journal.pone.0070618

    Article  CAS  Google Scholar 

  • Yoshida S, Hiyoshi K, Ichinose T, Takano H, Oshio S, Sugawara I, Takeda K, Shibamoto T (2008) Effect of nanoparticles on the male reproductive system of mice. Int J Androl 32:337–342. doi:10.1111/j.1365-2605.2007.00865.x

    Article  Google Scholar 

  • Zhao XY, Ze YG, Gao GD, Sang XZ, Li B, Gui SX, Sheng L, Sun QQ, Cheng J, Cheng Z, Hu RP, Wang L, Hong FS (2013) Nanosized TiO2-induced reproductive system dysfunction and its mechanism in female mice. PLoS One 8:e59378. doi:10.1371/journal.pone.0059378

    Article  CAS  Google Scholar 

  • Zirkin BR, Santulli R, Awoniyi CA, Ewing LL (1989) Maintenance of advanced spermatogenic cells in the adult rat testis: quantitative relationship to testosterone concentration within the testis. Endocrinology 124:3043–3049. doi:10.1210/endo-124-6-3043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is part of M. Sc thesis for Nahid Moradi-gharibvand and was supported by a Grant (CMRC-9423) from the research council of the Ahvaz Jundishapur University of Medical Sciences in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layasadat Khorsandi.

Ethics declarations

We performed this study according to the guidelines of the institution’s Animal Ethics Committee (approval number IR.AJUMS.REC.1394.541).

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorsandi, L., Orazizadeh, M., Moradi-Gharibvand, N. et al. Beneficial effects of quercetin on titanium dioxide nanoparticles induced spermatogenesis defects in mice. Environ Sci Pollut Res 24, 5595–5606 (2017). https://doi.org/10.1007/s11356-016-8325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8325-2

Keywords

Navigation