Skip to main content
Log in

Mycorrhizal colonization status of lowland rice (Oryza sativa L.) in the southeastern region of China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The accumulation, distribution, and speciation of contaminants, such as arsenic, in rice can be affected by soil microorganisms such as arbuscular mycorrhizal fungi (AMF). As a potential measure to control contaminant acquisition in rice, the status and performance of AMF in the field need to be investigated. Root samples of rice plants were collected in seven different cities in Guangdong, Jiangxi, Hubei, and Jiangsu Provinces in China in order to investigate the colonization rate of AMF. The total DNA of the roots was extracted, followed by PCR and sequencing, and further confirmed the existence of AMF. The highest colonization rates (19.5 ± 7.2%) were observed in samples from Huizhou City, Guangdong Province. Sequences of ribosomal DNA derived from Pingtan (PT) and Shuikou (SK) in Huizhou shared a similarity of 73 and 86% to Glomus cf. clarum Att894-7 (FM865542) and “uncultured fungus” (EF434122.1), respectively. The moisture tolerance of the AMF from different sources was tested by subjecting to different levels of water content in the soil. Only AMF from PT, SK, and LJ colonized rice under a condition of 100% of the soil water holding capacity (WHC), but not those isolated from upland plants. The AM colonization rate could be governed by the lighting conditions and temperature. AMF isolated in paddy fields has been shown to have more tolerance to moisture than other upland species. Radial oxygen loss (species and stress dependent) could be an essential factor influencing the colonization rate and requires more investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  CAS  Google Scholar 

  • Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43:9361–9367

    Article  CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Varma PDA, Buscot PF (eds) Microorg. Soils roles genes. Funct. Springer, Berlin Heidelberg, pp. 195–212

    Chapter  Google Scholar 

  • Barrett G, Campbell C, Fitter A, Hodge A (2011) The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Appl Soil Ecol 48:102–105

    Article  Google Scholar 

  • Bauer CR, Kellogg CH, Bridgham SD, Lamberti GA (2003) Mycorrhizal colonization across hydrologic gradients in restored and reference freshwater wetlands. Wetlands 23:961–968

    Article  Google Scholar 

  • Bogdan K, Schenk MK (2008) Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environ Sci Technol 42:7885–7890

    Article  CAS  Google Scholar 

  • Bohrer KE, Friese CF, Amon JP (2004) Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14:329–337

    Article  Google Scholar 

  • Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  Google Scholar 

  • Bowden WB (1987) The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry 4:313–348

    Article  CAS  Google Scholar 

  • Brody JR, Kern SE (2004) Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. BioTechniques 36:214–216

    CAS  Google Scholar 

  • Carvalho L, Ca I, Max M (2001) Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza 11:303–309

    Article  CAS  Google Scholar 

  • Carvalho LM, Correia PM, Martins-Loução MA (2004) Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14:165–170

    Article  Google Scholar 

  • Carvalho LM, Correia PM, Ryel RJ, Am M (2003) Spatial variability of arbuscular mycorrhizal fungal spores in two natural plant communities. Plant Soil 251:227–236

    Article  CAS  Google Scholar 

  • Chen AQ, Hu J, Sun SB, GH X (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol 173:817–831

    Article  CAS  Google Scholar 

  • Chen X, Li H, Chan WF, Wu C, Wu F, Wu S, Wong MH (2012) Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 89:1248–1254

  • Chen XW, Wu FY, Li H, Chan WF, Wu C, Wu SC, Wong MH (2013) Phosphate transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenate stress. Environ Exp Bot 87:92–99

  • Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    Article  CAS  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornwell WK, Bedford BL, Chapin CT (2001) Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. Am J Bot 88:1824–1829

    Article  CAS  Google Scholar 

  • Dhillion SS, Ampornpan L (1992) The influence of inorganic nutrient fertilization on the growth, nutrient composition and vesicular-arbuscular mycorrhizal colonization of pretransplant rice (Oryza sativa L.) plants. Biol Fertil Soils 13:85–91

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • González-Chávez M d CA, Ortega-Larrocea M d P, Carrillo-González R, López-Meyer M, Xoconostle-Cázares B, Gomez SK, Harrison MJ, Figueroa-López AM, Maldonado-Mendoza IE (2011) Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza. Fungal Biol 115:1197–1209

    Article  Google Scholar 

  • Guo W, Hou YL, Wang SG, Zhu YG (2005) Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant Soil 272:173–181

    Article  CAS  Google Scholar 

  • Guo W, Zhu YG, Liu WJ, Liang YC, Geng CN, Wang SG (2007) Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition? Environ Pollut 148:251–257

    Article  CAS  Google Scholar 

  • Hajiboland R, Aliasgharzad N, Barzeghar R (2009a) Phosphorus mobilization and uptake in mycorrhizal rice (Oryza sativa L.) plants under flooded and non-flooded conditions. Acta Agric Slov 93:153–161

    Article  Google Scholar 

  • Hajiboland R, Aliasgharzad N, Barzeghar R (2009b) Influence of arbuscular mycorrhizal fungi on uptake of Zn and P by two contrasting rice genotypes. Plant Soil Environ 55(3):93–100

    CAS  Google Scholar 

  • Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

    Google Scholar 

  • INVAM (International culture collection of arbuscular and vesicular-arbuscular endomycorrhizal fungi) (2016) Trap cultures. http://invam.wvu.edu/methods/cultures/trap-culture. Accessed 11 Sept 2016

  • Jensen MB, Hansen HCB, Nielsen NE, Magid J (1998) Phosphate mobilization and immobilization in two soils incubated under simulated reducing conditions. Acta Agric Scand sect B—Soil Plant Sci 48:11–17

    CAS  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüssler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  Google Scholar 

  • Li H (2011) The role of arbuscular mycorrhizal fungi on the tolerance and accumulation of arsenic in rice (Oryza sativa L.). PhD Thesis, Hong Kong Baptist University

  • Li H, Ye ZH, Chan WF, Chen XW, Wu FY, Wu SC, Wong MH (2011) Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions? Environ Pollut 159(10):2537–2545

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009a) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  Google Scholar 

  • Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ (2009b) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43:3778–3783

    Article  CAS  Google Scholar 

  • Liu Y, Shi G, Mao L, Cheng G, Jiang S, Ma X, An L, Du G, Collins Johnson N, Feng H (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194:523–535

    Article  CAS  Google Scholar 

  • Lucassen ECHET, Smolders AJP, Van De Crommenacker J, Roelofs JGM (2004) Effects of stagnating sulphate-rich groundwater on the mobility of phosphate in freshwater wetlands: a field experiment. Arch Für Hydrobiol 160:117–131

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105:9931–9935

    Article  CAS  Google Scholar 

  • Maiti D, Singh RK, Variar M (2011) Rice-based crop rotation for enhancing native arbuscular mycorrhizal (AM) activity to improve phosphorus nutrition of upland rice (Oryza sativa L.). Biol Fertil Soils 48:67–73

    Article  Google Scholar 

  • Meharg AA (2004) Arsenic in rice—understanding a new disaster for South-East Asia. Trends Plant Sci 9:415–417

    Article  CAS  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    Article  CAS  Google Scholar 

  • Miller SP (2000) Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytol 145:145–155

    Article  Google Scholar 

  • Miller SP, Sharitz RR (2000) Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Funct Ecol 14:738–748

    Article  Google Scholar 

  • Neue H-U (1993) Methane emission from rice fields. Bioscience 43:466–474

    Article  Google Scholar 

  • Oliveira RS, Dodd JC, Castro PML (2001) The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialised region of Northern Portugal. Mycorrhiza 10:241–247

    Article  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329

    Article  CAS  Google Scholar 

  • Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Son CL, Smith SE (1988) Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition. New Phytol 108:305–314

    Article  Google Scholar 

  • Stenlund DL, Charvat ID (1994) Vesicular arbuscular mycorrhizae in floating wetland mat communities dominated by Typha. Mycorrhiza 4:131–137

    Article  Google Scholar 

  • Stockinger H, Walker C, Schüssler A (2009) Glomus intraradices DAOM197198, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187

  • Sudova R, Rydlova J, Ctvrtlikova M, Havranek P, Adamec L (2011) The incidence of arbuscular mycorrhiza in two submerged Isoëtes species. Aquat Bot 94:183–187

    Article  Google Scholar 

  • Sumorok B, Kiedrzynska E (2007) Mycorrhizal status of native willow species in the Pilica River floodplain along the moisture gradient. Wetl. Monit. Model. Manag. Taylor & Francis, London, New York, pp 281–286

  • Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044

    Article  CAS  Google Scholar 

  • Taylor DL, Herriott IC, Long J, O’Neill K (2007) TOPO TA is A-OK: a test of phylogenetic bias in fungal environmental clone library construction. Environ Microbiol 9:1329–1334

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  Google Scholar 

  • Wang FY, Liu RJ, Lin XG, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–137

    Article  Google Scholar 

  • Wang K, Zhao Z (2006) Occurrence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in southwest China. Int Rev Hydrobiol 91:29–37

    Article  CAS  Google Scholar 

  • Wu C, Zou Q, Xue S-G, Pan W-S, Yue X, Hartley W, Huang L, Mo J-Y (2016) Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants. Chemosphere 165:478–486

    Article  CAS  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  CAS  Google Scholar 

  • Yan JZ, Wu FS, Feng HY (2008) Review on the relationship between wetland plants and arbuscular mycorrhizal fungi (AMF). Acta Bot Boreali-Occident Sin 28:836–842

    CAS  Google Scholar 

  • Young EO, Ross DS (2001) Phosphate release from seasonally flooded soils. J Environ Qual 30:91

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the General Research Fund of Hong Kong (HKBU 262009) and Special Equipment Grant (HKBU09) and the Mini-AoE (Area of Excellence, RC/AOE/08-09/01) Fund from Hong Kong Baptist University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hung Wong.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Table S1

(DOCX 12 kb)

Fig S1

(DOCX 7301 kb)

Fig S2

(DOCX 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XW., Wu, FY., Li, H. et al. Mycorrhizal colonization status of lowland rice (Oryza sativa L.) in the southeastern region of China. Environ Sci Pollut Res 24, 5268–5276 (2017). https://doi.org/10.1007/s11356-016-8287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8287-4

Keywords

Navigation