Skip to main content

Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Bimetallic nanoparticles are generally believed to have improved catalytic activity and stability due to geometric and electronic changes. In this work, biogenic-Pd (bio-Pd), biogenic-Pt (bio-Pt), and biogenic-PdPt (bio-PdPt) nanoparticles were synthesized by Shewanella oneidensis MR-1 in the absence or presence of quinone. Compared with direct microbial reduction process, the addition of anthraquinone-2,6-disulfonate (AQDS) could promote the reduction efficiency of Pd(II) or/and Pt(IV) and result in decrease of particles size. All kinds of nanoparticles could catalyze 4-nitrophenol reduction by NaBH4 and their catalytic activities took the following order: bio-PdPt (AQDS) ∼ bio-PdPt > bio-Pd (AQDS) > bio-Pd > bio-Pt (AQDS) ∼ bio-Pt. Moreover, the bio-PdPt (AQDS) nanoparticles could be reused for 6 cycles. We believe that this simple and efficient biosynthesis approach for synthesizing bimetallic bio-PdPt nanocatalysts is important for preparing active and stable catalysts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Baxter-Plant VS, Mikheenko IP, Macaskie LE (2003) Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds. Biodegradation 14(2):83–90

    CAS  Article  Google Scholar 

  2. Beliaev AS, Saffarini DA (1998) Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe (III) and Mn (IV) reduction. J Bacteriol 180(23):6292–6297

    CAS  Google Scholar 

  3. Chen CS, Lai YT, Chen TC et al (2014) Synthesis and characterization of Pt nanoparticles with different morphologies in mesoporous silica SBA-15 for methanol oxidation reaction. Nanoscale 6(21):12644–12654

    CAS  Article  Google Scholar 

  4. De Corte S, Hennebel T, Fitts JP et al (2011) Biosupported bimetallic Pd-Au nanocatalysts for dechlorination of environmental contaminants. Environ Sci Technol 45(19):8506–8513

    CAS  Article  Google Scholar 

  5. De Corte S, Hennebel T, De Gusseme B et al (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechno 5(1):5–17

    CAS  Article  Google Scholar 

  6. De Windt W, Boon N, Van den Bulcke J et al (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Anton Leeuw 90(4):377–389

    Article  Google Scholar 

  7. Deplanche K, Bennett JA, Mikheenko IP et al (2014) Catalytic activity of biomass-supported Pd nanoparticles: influence of the biological component in catalytic efficacy and potential application in ‘green’ synthesis of fine chemicals and pharmaceuticals. Appl Catal B Environ 147:651–665

    CAS  Article  Google Scholar 

  8. Dong Z, Le X, Dong C et al (2015) Ni@ Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. App Catal B: Environl 162:372–380

    CAS  Article  Google Scholar 

  9. El-Sheikh SM, Ismail AA, Al-Sharab JF (2013) Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica. New J Chem 37(8):2399–2407

    CAS  Article  Google Scholar 

  10. Ghosh SK, Mandal M, Kundu S et al (2004) Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl Catal A Gen 268(1):61–66

    CAS  Article  Google Scholar 

  11. Govindaraju K, Basha SK, Kumar VG et al (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43(15):5115–5122

    CAS  Article  Google Scholar 

  12. Hennebel T, Verhagen P, Simoen H et al (2009) Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. Chemosphere 76(9):1221–1225

    CAS  Article  Google Scholar 

  13. Hennebel T, De Corte S, Verstraete W et al (2012) Microbial production and environmental applications of Pd nanoparticles for treatment of halogenated compounds. Curr Opin Biotech 23(4):555–561

    CAS  Article  Google Scholar 

  14. Hong JW, Kang SW, Choi BS et al (2012) Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 6(3):2410–2419

    CAS  Article  Google Scholar 

  15. Hosseinkhani B, Søbjerg LS, Rotaru AE et al (2012) Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles. Biotechnol Bioeng 109(1):45–52

    CAS  Article  Google Scholar 

  16. Humphries AC, Macaskie LE (2005) Reduction of Cr (VI) by palladized biomass of Desulfovibrio vulgaris NCIMB 8303. J Chem Technol Biot 80(12):1378–1382

    CAS  Article  Google Scholar 

  17. Kim Y, Noh Y, Lim EJ et al (2014) Star-shaped Pd@Pt core–shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance. J Mater Chem A 2(19):6976–6986

    CAS  Article  Google Scholar 

  18. Kobayashi H, Yamauchi M, Kitagawa H et al (2010) Atomic-level Pd–Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. J Am Chen Soc 132(16):5576–5577

    CAS  Article  Google Scholar 

  19. Konishi Y, Ohno K, Saitoh N et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128(3):648–653

    CAS  Article  Google Scholar 

  20. Lee YW, Ko AR, Kim DY et al (2012) Octahedral Pt-Pd alloy catalysts with enhanced oxygen reduction activity and stability in proton exchange membrane fuel cells. RSC Adv 2(3):1119–1125

    CAS  Article  Google Scholar 

  21. Li C, Su Y, Lv X et al (2012a) Enhanced ethanol electrooxidation of hollow Pd nanospheres prepared by galvanic exchange reactions. Mater Lett 69:92–95

    CAS  Article  Google Scholar 

  22. Li X, Wang X, Song S et al (2012b) Selectively deposited noble metal nanoparticles on Fe3O4/graphene composites: stable, recyclable, and magnetically separable catalysts. Chem Eur J 18(24):7601–7607

    CAS  Article  Google Scholar 

  23. Liu G, Zhou J, Ji Q et al (2013) Accelerated removal of Sudan dye by Shewanella oneidensis MR-1 in the presence of quinones and humic acids. World J Microb Biot 29(9):1723–1730

    CAS  Article  Google Scholar 

  24. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microb 54(6):1472–1480

    CAS  Google Scholar 

  25. Lovley DR, Coates JD, Blunt-Harris EL et al (1996) Humic substances as electron acceptors for microbial respiration. Nature 382(6590):445–448

    CAS  Article  Google Scholar 

  26. Mertens B, Blothe C, Windey K et al (2007) Biocatalytic dechlorination of lindane by nano-scale particles of Pd (0) deposited on Shewanella oneidensis. Chemosphere 66(1):99–105

    CAS  Article  Google Scholar 

  27. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interfa 156(1):1–13

    CAS  Article  Google Scholar 

  28. Oh SD, Kim MR, Choi SH et al (2008) Radiolytic synthesis of Pd–M (M = Ag, Au, Cu, Ni and Pt) alloy nanoparticles and their use in reduction of 4-nitrophenol. J Ind Eng Chem 14(5):687–692

    CAS  Article  Google Scholar 

  29. Pan Y, Ma D, Liu H et al (2012) Uncoordinated carbonyl groups of MOFs as anchoring sites for the preparation of highly active Pd nano-catalysts. J Mater Chem 22(21):10834–10839

    CAS  Article  Google Scholar 

  30. Pearce CI, Pattrick RAD, Law N et al (2009) Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica. Environ Technol 30(12):1313–1326

    CAS  Article  Google Scholar 

  31. Qian F, Wang G, Li Y (2010) Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Lett 10(11):4686–4691

    CAS  Article  Google Scholar 

  32. Qu L, Dai L (2005) Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J Am Chem Soc 127(31):10806–10807

    CAS  Article  Google Scholar 

  33. Schröfel A, Kratošová G, Šafařík I et al (2014) Applications of biosynthesized metallic nanoparticles—a review. Acta Biomater 10(10):4023–4042

    Article  Google Scholar 

  34. Senapati S, Ahmad A, Khan MI et al (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1(5):517–520

    CAS  Article  Google Scholar 

  35. Shen YY, Sun Y, Zhou LN et al (2014) Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction. J Mater Chem A 2(9):2977–2984

    CAS  Article  Google Scholar 

  36. Shiraishi Y, Takeda Y, Sugano Y et al (2011) Highly efficient photocatalytic dehalogenation of organic halides on TiO2 loaded with bimetallic Pd–Pt alloy nanoparticles. Chem Commun 47(27):7863–7865

    CAS  Article  Google Scholar 

  37. Søbjerg LS, Lindhardt AT, Skrydstrup T et al (2011) Size control and catalytic activity of bio-supported palladium nanoparticles. Colloid Surface B 85(2):373–378

    Article  Google Scholar 

  38. Takenaka S, Tsukamoto T, Matsune H et al (2013) Carbon nanotube-supported Pd–Co catalysts covered with silica layers as active and stable cathode catalysts for polymer electrolyte fuel cells. Catal Sci Technol 3(10):2723–2731

    CAS  Article  Google Scholar 

  39. Tang S, Vongehr S, He G et al (2012) Highly catalytic spherical carbon nanocomposites allowing tunable activity via controllable Au–Pd doping. J Colloid Inter Sci 375(1):125–133

    CAS  Article  Google Scholar 

  40. Tang S, Zhu J (2014) Structural and electronic properties of Pd-decorated graphene oxides and their effects on the adsorption of nitrogen oxides: insights from density functional calculations. RSC Adv 4(44):23084–23096

    CAS  Article  Google Scholar 

  41. Tuo Y, Liu G, Zhou J et al (2013) Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction. Bioresource Tech 133:606–611

    CAS  Article  Google Scholar 

  42. Tuo Y, Liu G, Dong B et al (2015) Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds. Sci Rep 5

  43. Van der Zee FP, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio) transformation of contaminants: a review. Biotechnol Adv 27(3):256–277

    CAS  Article  Google Scholar 

  44. Wang X, Liu D, Song S et al (2013) CeO2-based Pd (Pt) nanoparticles grafted onto Fe3O4/graphene: a general self-assembly approach to fabricate highly efficient catalysts with magnetic recyclable capability. Chem-Eur J 19(16):5169–5173

    CAS  Article  Google Scholar 

  45. Wang Q, Li Y, Liu B et al (2015) Novel recyclable dual-heterostructured Fe3O4@ CeO2/M (M = Pt, Pd and Pt–Pd) catalysts: synergetic and redox effects for superior catalytic performance. J Mater Chem A, 2015 3(1):139–147

    CAS  Article  Google Scholar 

  46. Windt WD, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325

    Article  Google Scholar 

  47. Wu R, Cui L, Chen L et al (2013) Effects of bio-Au nanoparticles on electrochemical activity of Shewanella oneidensis wild type and ΔomcA/mtrC mutant. Sci Rep 3

  48. Xi P, Chen F, Xie G et al (2012) Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Nanoscale 4(18):5597–5601

    CAS  Article  Google Scholar 

  49. Yao T, Cui T, Fang X et al (2013) Preparation of yolk–shell FexOy/Pd@ mesoporous SiO2 composites with high stability and their application in catalytic reduction of 4-nitropheno. Nanoscale 5(13):5896–5904

    CAS  Article  Google Scholar 

  50. Yong P, Paterson-Beedle M, Mikheenko IP et al (2007) From bio-mineralisation to fuel cells: biomanufacture of Pt and Pd nanocrystals for fuel cell electrode catalyst. Biotechnol Lett 29(4):539–544

    CAS  Article  Google Scholar 

  51. Yue B, Ma Y, Tao H et al (2008) CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. J Mater Chem 18(15):1747–1750

    CAS  Article  Google Scholar 

  52. Yue R, Wang H, Bin D et al (2015) Facile one-pot synthesis of Pd–PEDOT/graphene nanocomposites with hierarchical structure and high electrocatalytic performance for ethanol oxidation. J Mater Chem A 3(3):1077–1088

    CAS  Article  Google Scholar 

  53. Zhang G, Yang Z, Huang C et al (2015) Small-sized and highly dispersed Pt nanoparticles loading on graphite nanoplatelets as an effective catalyst for methanol oxidation. Nanoscale 7(22):10170–10177

    CAS  Article  Google Scholar 

  54. Zhang H, Jin M, Liu H et al (2011a) Facile synthesis of Pd–Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 5(10):8212–8222

  55. Zhang J, Wan L, Liu L et al (2016) PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale 8(7):3962–3972

    CAS  Article  Google Scholar 

  56. Zhang K, Hu X, Liu J et al (2011b) Formation of PdPt alloy nanodots on gold nanorods: tuning oxidase-like activities via composition. Langmuir 27(6):2796–2803

  57. Zhang P, Li R, Huang Y et al (2014) A novel approach for the in situ synthesis of Pt–Pd nanoalloys supported on Fe3O4@C core–shell nanoparticles with enhanced catalytic activity for reduction reactions. ACS App Mater Inter 6(4):2671–2678

    CAS  Article  Google Scholar 

  58. Zhao R, Gong M, Zhu H et al (2014) Seed-assisted synthesis of Pd@Au core–shell nanotetrapods and their optical and catalytic properties. Nanoscale 6(15):9273–9278

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51478076).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guangfei Liu.

Additional information

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tuo, Y., Liu, G., Dong, B. et al. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol. Environ Sci Pollut Res 24, 5249–5258 (2017). https://doi.org/10.1007/s11356-016-8276-7

Download citation

Keywords

  • Bimetallic nanoparticles
  • Palladium
  • Platinum
  • Catalyst
  • Shewanella oneidensis MR-1
  • 4-Nitrophenol