Environmental Science and Pollution Research

, Volume 24, Issue 6, pp 5497–5508 | Cite as

Assessment of mercury exposure and maternal-foetal transfer in Miniopterus schreibersii (Chiroptera: Miniopteridae) from southeastern Iberian Peninsula

  • Fulgencio Lisón
  • Silvia EspínEmail author
  • Bárbara Aroca
  • José F. Calvo
  • Antonio J. García-Fernández
Research Article


Mercury (Hg) is a highly toxic and widely distributed metal that is bioaccumulated in insectivorous mammals and may cause adverse effects on the reproductive system. Bats are considered excellent Hg bioindicators due to their wide distribution, life span, trophic position, metabolic rate and food intake. However, few studies have analysed Hg residues in bats, and to the best of our knowledge, no studies have been made in the Iberian Peninsula. The main aim of this study was to undertake the first ever assessment of Hg exposure in Schreiber’s bent-winged bats inhabiting a natural cave in the southeast of Spain. The findings suggest that Schreiber’s bent-winged bats in the sampling area are chronically exposed to low levels of Hg. The Hg concentrations found in different tissues (fur, kidney, liver, muscle and brain) were below the threshold levels associated with toxic effects in mammals. Non-gestating females showed Hg concentrations in the brain and muscle that doubled those found in gestating females. This could be due to Hg mobilization from the mother to the foetus in gestating females, although other factors could contribute to explain this result such as variations in hunting areas and the insect-prey consumed and/or different energetic needs and average food consumption during the breeding season. Hg levels were 1.7 times higher, although not significant, in foetus’ brains than in the maternal brains, and Hg concentration in foetus’ brain was significantly correlated with levels in the corresponding mothers’ kidney. These results suggest that there could be an active mother-to-foetus transfer of Hg in bats, which would be of special relevance in a scenario of higher Hg exposure than that found in this study. However, further research is needed to support this view due to the limited number of samples analysed. Given the scarce ecotoxicological data available for bats and their protected status, we encourage further opportunistic studies using carcasses found in the field, the validation of non-destructive samples such as fur and guano for Hg monitoring, and new modelling approaches that will increase the data needed for proper ecological risk assessment in bat populations.


Maternal transfer Foetus Brain Kidney Liver Muscle Fur Total mercury Wildlife toxicology 



This work was supported by the Fundación Séneca (CARM) with the MASCA’2014 Project (19481/PI/14). FL was supported by a fellowship (Programa MECE Educación Superior) from the Chilean Ministry of Education and postdoctoral fellowship (Programa de Formación de Investigadores Postdoctorales) from Universidad de La Frontera, Chile. SE was funded by the Academy of Finland (project number 265859 to Dr. Tapio Eeva) and by Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia (20031/SF/16 to Dr. Silvia Espín). The first version of the manuscript was considerably improved by the comments of the anonymous reviewers and the editor. To the best of our knowledge, no conflict of interest, financial or other, exists.


  1. Allinson G, Mispagel C, Kajiwara N et al (2006) Organochlorine and trace metal residues in adult southern bent-wing bat (Miniopterus schreibersii bassanii) in southeastern Australia. Chemosphere 64:1464–1471. doi: 10.1016/j.chemosphere.2005.12.067 CrossRefGoogle Scholar
  2. Benoit JMJ, CCC G, Heyes A et al (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. ACS Symp 835:1–33Google Scholar
  3. Bernhoft RA (2012) Mercury toxicity and treatment: A review of the literature. J Environ Public Health. doi: 10.1155/2012/460508
  4. Bourdineaud J-P, Bellance N, Bénard G et al (2008) Feeding mice with diets containing mercury-contaminated fish flesh from French Guiana: a model for the mercurial intoxication of the Wayana Amerindians. Environ Health 7:1–13. doi: 10.1186/1476-069X-7-53 CrossRefGoogle Scholar
  5. Bourdineaud J-P, Laclau M, Maury-Brachet R et al (2012) Effects of methylmercury contained in a diet mimicking the Wayana Amerindians contamination through fish consumption: mercury accumulation, metallothionein induction, gene expression variations, and role of the chemokine CCL2. Int J Mol Sci 13:7710. doi: 10.3390/ijms13067710 CrossRefGoogle Scholar
  6. Brunet-Rossinni AK, Austad SN (2004) Ageing studies on bats: A review. Biogerontology 5:211–222CrossRefGoogle Scholar
  7. Chen Z, Myers R, Wei T et al (2014) Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. J Expo Sci Environ Epidemiol 24:537–544. doi: 10.1038/jes.2014.26 CrossRefGoogle Scholar
  8. Cristol DA, Brasso RL, Condon AM et al (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335. doi: 10.1126/science.1154082 CrossRefGoogle Scholar
  9. Crosse JD, Shore RF, Jones KC, Pereira MG (2013) Key factors affecting liver {PBDE} concentrations in sparrowhawks (Accipiter nisus). Environ Pollut 177:171–176. doi: 10.1016/j.envpol.2013.02.006 CrossRefGoogle Scholar
  10. Dietz C, von Helversen O, Nill D (2009) Bats of Britain, Europe and Northwest Africa. A&C Black Publishers Ltd., LondonGoogle Scholar
  11. Díez S (2009) Human health effects of methylmercury exposure. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer New York, New York, NY, pp 111–132Google Scholar
  12. Dock L, Rissanen RL, Vahter M (1994) Demethylation and placental transfer of methyl mercury in the pregnant hamster. Toxicology 94:131–142. doi: 10.1016/0300-483X(94)90033-7 CrossRefGoogle Scholar
  13. Dorea JG (2011) Environmental contaminants as biomarkers of fish intake: a case for hair mercury concentrations. Eur J Clin Nutr 65:419–420CrossRefGoogle Scholar
  14. Encarnação JA, Dietz M (2006) Estimation of food intake and ingested energy in Daubenton’s bats (Myotis daubentonii) during pregnancy and spermatogenesis. Eur J Wildl Res 52:221–227. doi: 10.1007/s10344-006-0046-2 CrossRefGoogle Scholar
  15. Espín S, García-Fernández AJ, Herzke D et al (2016) Tracking pan-continental trends in environmental contamination using sentinel raptors—what types of samples should we use? Ecotoxicology 25:777–801. doi: 10.1007/s10646-016-1636-8 CrossRefGoogle Scholar
  16. Espín S, Martínez-López E, Gómez-Ramírez P et al (2012) Razorbills (Alca torda) as bioindicators of mercury pollution in the southwestern Mediterranean. Mar Pollut Bull 64:2461–2470. doi: 10.1016/j.marpolbul.2012.07.045 CrossRefGoogle Scholar
  17. Espín S, Martínez-López E, León-Ortega M et al (2014) Factors that influence mercury concentrations in nestling eagle owls (Bubo bubo). Sci Total Environ 470–471:1132–1139. doi: 10.1016/j.scitotenv.2013.10.063 CrossRefGoogle Scholar
  18. Flache L, Czarnecki S, Düring R-A et al (2015) Trace metal concentrations in hairs of three bat species from an urbanized area in Germany. J Environ Sci 31:184–193. doi: 10.1016/j.jes.2014.12.010 CrossRefGoogle Scholar
  19. Fraser EE, Longstaffe FJ, Fenton MB (2013) Moulting matters: the importance of understanding moulting cycles in bats when using fur for endogenous marker analysis. Can J Zool Can Zool 91:533–544. doi: 10.1139/cjz-2013-0072 CrossRefGoogle Scholar
  20. García-Fernández AJ, Calvo JF, Martínez-López E, María-Mojica P, Martínez JE (2008) Raptor ecotoxicology in Spain: a review on persistent environmental contaminants. AMBIO J Hum Environ 37(6):432–439CrossRefGoogle Scholar
  21. Gibbs RH, Jarosewich E, Windom HL (1974) Heavy metal concentrations in museum fish specimens: effects of preservatives and time. Science 184:475–477. doi: 10.1126/science.184.4135.475 CrossRefGoogle Scholar
  22. Greenwood MR, Clarkson TW, Doherty RA et al (1978) Blood clearance half-times in lactating and nonlactating members of a population exposed to methylmercury. Environ Res 16:48–54. doi: 10.1016/0013-9351(78)90140-8 CrossRefGoogle Scholar
  23. Gupta RC (2011) Mercury. In: Gupta RC (ed) Veterinary toxicology: basic and clinical principles, 2nd edn. Academic Press, Oxford, pp 537–543Google Scholar
  24. Haro RJ, Bailey SW, Northwick RM et al (2013) Burrowing dragonfly larvae as biosentinels of methylmercury in freshwater food webs. Environ Sci Technol 47:8148–8156. doi: 10.1021/es401027m Google Scholar
  25. Hartmann R (2000) Deskription der Schwermetallgehalte in Knochen, Organen und Haaren von Fledermäusen (Chiroptera) im Zeitraum 1987 bis 1999. Dissertation, Georg August Universität, GöttingenGoogle Scholar
  26. Henderson BL, Chumchal MM, Drenner RW et al (2012) Effects of fish on mercury contamination of macroinvertebrate communities of grassland ponds. Environ Toxicol Chem 31:870–876. doi: 10.1002/etc.1760 CrossRefGoogle Scholar
  27. Hernout BV, Bowman SR, Weaver RJ et al (2015) Implications of in vitro bioaccessibility differences for the assessment of risks of metals to bats. Environ Toxicol Chem 34:898–906. doi: 10.1002/etc.2871 CrossRefGoogle Scholar
  28. Hernout BV, Somerwill KE, Arnold KE et al (2013) A spatially-based modeling framework for assessing the risks of soil-associated metals to bats. Environ Pollut 173:110–116. doi: 10.1016/j.envpol.2012.08.017 CrossRefGoogle Scholar
  29. Hernout BV, Arnold KE, McClean CJ et al (2016a) A national level assessment of metal contamination in bats. Environ Pollut 214:847–858. doi: 10.1016/j.envpol.2016.04.079 CrossRefGoogle Scholar
  30. Hernout BV, McClean CJ, Arnold KE et al (2016b) Fur: a non-invasive approach to monitor metal exposure in bats. Chemosphere 147:376–381. doi: 10.1016/j.chemosphere.2015.12.104 CrossRefGoogle Scholar
  31. Hickey MBC, Fenton MB, MacDonald KC, Soulliere C (2001) Trace elements in the fur of bats (Chiroptera: Vespertilionidae) from Ontario and Quebec, Canada. Bull Environ Contam Toxicol 66:699–706CrossRefGoogle Scholar
  32. Hill J, Chumchal MM, Drenner RW et al (2010) Use of preserved museum fish to evaluate historical and current mercury contamination in fish from two rivers in Oklahoma, USA. Environ Monit Assess 161:509–516. doi: 10.1007/s10661-009-0764-5 CrossRefGoogle Scholar
  33. Hussain S, Atkinson A, Thompson SJ, Khan AT (1999) Accumulation of mercury and its effect on antioxidant enzymes in brain, liver, and kidneys of mice. J Environ Sci Heal Part B 34:645–660. doi: 10.1080/03601239909373219 CrossRefGoogle Scholar
  34. Jackson AK, Evers DC, Folsom SB et al (2011) Mercury exposure in terrestrial birds far downstream of an historical point source. Environ Pollut 159:3302–3308. doi: 10.1016/j.envpol.2011.08.046 CrossRefGoogle Scholar
  35. Jones G, Jacobs DS, Kunz TH et al (2009) Carpe noctem: the importance of bats as bioindicators. Endanger Species Res 8:93–115. doi: 10.3354/esr00182 CrossRefGoogle Scholar
  36. Jugo S (1976) Retention and distribution of 203HgCl2 in suckling and adult rats. Health Phys 30:240–241Google Scholar
  37. Kalisinska E, Lisowski P, Kosik-Bogacka DI (2012) Red fox Vulpes vulpes (L., 1758) as a bioindicator of mercury contamination in terrestrial ecosystems of North-Western Poland. Biol Trace Elem Res 145:172–180CrossRefGoogle Scholar
  38. Knott KK, Boyd D, Ylitalo GM, O’Hara TM (2012) Lactational transfer of mercury and polychlorinated biphenyls in polar bears. Chemosphere 88:395–402. doi: 10.1016/j.chemosphere.2012.02.053 CrossRefGoogle Scholar
  39. Krey A, Kwan M, Chan HM (2012) Mercury speciation in brain tissue of polar bears (Ursus maritimus) from the Canadian Arctic. Environ Res 114:24–30CrossRefGoogle Scholar
  40. Kunz TH, Lumsden LF (2003) Ecology of cavity and foliage roosting bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, U.S., pp 3–89Google Scholar
  41. Kurta A, Bell GP, Nagy KA, Kunz TH (1989) Energetics of pregnancy and lactation in free-ranging little brown bats (Myotis lucifugus). Physiol Zool 62:804–818CrossRefGoogle Scholar
  42. Lisón F (2012) Datos biométricos de cinco especies de murciélagos (Mammalia: Chiroptera) de la Región de Murcia (SE España). An Biol 34:35–40Google Scholar
  43. Lisón F (2014) Murciélago de cueva - Miniopterus schreibersii. In: Salvador A, Luque-Larena JJ (eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid Available: Accessed 05/05/2015Google Scholar
  44. Lisón F, Aledo E, Calvo JF (2011) Los murciélagos (Mammalia: Chiroptera) de la Región de Murcia (SE España): distribución y estado de conservación. An Biol 33:79–92Google Scholar
  45. Lisón F, López-Espinosa JA, Calvo JF, Jones G (2015) Diet of the meridional serotine Eptesicus Isabellinus in an urban semiarid Mediterranean landscape. Acta Chiropterologica 17:371–378. doi: 10.3161/15081109ACC2015.17.2.013 CrossRefGoogle Scholar
  46. Lisón F, Palazón JA, Calvo JF (2013) Effectiveness of the Natura 2000 Network for the conservation of cave-dwelling bats in a Mediterranean region. Anim Conserv 16:528–537. doi: 10.1111/acv.12025 CrossRefGoogle Scholar
  47. Lisón F, Yelo ND, Haz Á, Calvo JF (2010) Contribución al conocimiento de la distribución de la fauna quiropterológica de la Región de Murcia. Galemys 22:11–28Google Scholar
  48. Little ME, Burgess NM, Broders HG, Campbell LM (2015a) Mercury in little brown bat (Myotis lucifugus) maternity colonies and its correlation with freshwater acidity in Nova Scotia, Canada. Environ Sci Technol 49:2059–2065. doi: 10.1021/es5050375 CrossRefGoogle Scholar
  49. Little ME, Burgess NM, Broders HG, Campbell LM (2015b) Distribution of mercury in archived fur from little brown bats across Atlantic Canada. Environ Pollut 207:52–58. doi: 10.1016/j.envpol.2015.07.049 CrossRefGoogle Scholar
  50. Lueftl S, Freitag B, Deutz A, Tataruch F (2003) Concentration of heavy metals in European bats (Microchiroptera). Fresenius Environ Bull 12:353–358Google Scholar
  51. Maxson P (2005) Mercury flows in Europe and the world: the impact of decommissioned chlor-alkali plants. In: Pirrone E, Mahaffey KR (eds) Dynamics of mercury pollution on regional and global scales, atmospheric processes and human exposures around the world. Springer, New York, U.S., pp 25–50CrossRefGoogle Scholar
  52. Mclean JA, Speakman JR (1999) Energy budgets of lactating and non-reproductive brown long-eared bats (Plecotus auritus) suggest females use compensation in lactation. Funct Ecol 13:360–372. doi: 10.1046/j.1365-2435.1999.00321.x CrossRefGoogle Scholar
  53. Mickleburgh SP, Hutson AM, Racey PA (2002) A review of the global conservation status of bats. Oryx 36:18–34. doi: 10.1017/S0030605301000011 CrossRefGoogle Scholar
  54. Micó C, Peris M, Sánchez J, Recatalá L (2006) Heavy metal content of agricultural soils in a Mediterranean semiarid area: the Segura River Valley (Alicante, Spain). Spanish J Agric Res 4:363–372CrossRefGoogle Scholar
  55. Millán A, Velasco J, Gutiérrez-Cánovas C et al (2011) Mediterranean saline streams in Southeast Spain: what do we know? J Arid Environ 75:1352–1359. doi: 10.1016/j.jaridenv.2010.12.010 CrossRefGoogle Scholar
  56. Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566. doi: 10.1146/annurev.ecolsys.29.1.543 CrossRefGoogle Scholar
  57. Nam DH, Yates D, Ardapple P et al (2012) Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination. Ecotoxicology 21:1094–1101. doi: 10.1007/s10646-012-0864-9 CrossRefGoogle Scholar
  58. O’Shea TJ, Johnston JJ (2009) Environmental contaminants and bats: investigating exposure and effects. In: Kuntz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, Baltimore, U.S., pp 500–528Google Scholar
  59. Pacyna EG, Pacyna JM, Pirrone N (2001) European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmos Environ 35:2987–2996. doi: 10.1016/S1352-2310(01)00102-9 CrossRefGoogle Scholar
  60. Pérez-Sirvent C, Martínez-Sánchez MJ, García-Lorenzo ML et al (2009) Geochemical background levels of zinc, cadmium and mercury in anthropically influenced soils located in a semi-arid zone (SE, Spain). Geoderma 148:307–317. doi: 10.1016/j.geoderma.2008.10.017 CrossRefGoogle Scholar
  61. Poulopoulos J (2013) Long-term changes to food web structures and mercury biomagnification in three large, inland North American lakes. Dissertation, Queen’s University, Kingston, Ontario, CanadaGoogle Scholar
  62. Rainho A, Palmeirim JM (2011) The importance of distance to resources in the spatial modelling of bat foraging habitat. PLoS One 6(4):e19227. doi: 10.1371/journal.pone.0019227 CrossRefGoogle Scholar
  63. Reuhl KR, Chang LW, Townsend JW (1981) Pathological effects of in utero methylmercury exposure on the cerebellum of the golden hamster. Environ Res 26:281–306. doi: 10.1016/0013-9351(81)90205-X CrossRefGoogle Scholar
  64. Sánchez-Virosta P, Espín S, García-Fernández AJ, Eeva T (2015) A review on exposure and effects of arsenic in passerine birds. Sci Total Environ 512-513:506–525. doi: 10.1016/j.scitotenv.2015.01.069 CrossRefGoogle Scholar
  65. Scheuhammer AM (1987) The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: a review. Environ Pollut 46:263–295. doi: 10.1016/0269-7491(87)90173-4 CrossRefGoogle Scholar
  66. Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–18. doi: 10.1579/0044-7447(2007)36[12:EOEMOT]2.0.CO;2 CrossRefGoogle Scholar
  67. Schmeltz D, Evers DC, Driscoll CT et al (2011) MercNet: a national monitoring network to assess responses to changing mercury emissions in the United States. Ecotoxicology 20:1713–1725. doi: 10.1007/s10646-011-0756-4 CrossRefGoogle Scholar
  68. Simmons JE (2014) Fluid preservation: a comprehensive reference. Rowman & Littlefield, Lanham, MarylandGoogle Scholar
  69. Streets DG, Zhang Q, Wu Y (2009) Projections of global mercury emissions in 2050. Environ Sci Technol 43:2983–2988. doi: 10.1021/es802474j CrossRefGoogle Scholar
  70. Streit B, Nagel A (1993a) Element assessment in tissue samples from European bats (Microchiroptera). Fresenius Environ Bull 2:162–167Google Scholar
  71. Streit B, Nagel A (1993b) Heavy metal by lactation in a bat colony. Fresenius Environ Bull 2:168–173Google Scholar
  72. Syaripuddin K, Kumar A, Sing KW et al (2014) Mercury accumulation in bats near hydroelectric reservoirs in peninsular Malaysia. Ecotoxicology 23:1164–1171. doi: 10.1007/s10646-014-1258-y CrossRefGoogle Scholar
  73. Thompson DR (1996) Mercury in birds and terrestrial mammals. In: Beyer WN, Meador JP (eds) Environmental contaminants in wildlife. Interpreting tissue concentrations. CRC Press, London, pp 341–356Google Scholar
  74. Tweedy BN, Drenner RW, Chumchal MM, Kennedy JH (2013) Effects of fish on emergent insect-mediated flux of methyl mercury across a gradient of contamination. Environ Sci Technol 47:1614–1619. doi: 10.1021/es303330m Google Scholar
  75. Vahter ME, Mottet NK, Friberg LT et al (1995) Demethylation of methyl mercury in different brain sites of Macaca fascicularis monkeys during long-term subclinical methyl mercury exposure. Toxicol Appl Pharmacol 134:273–284. doi: 10.1006/taap.1995.1193 CrossRefGoogle Scholar
  76. Vincent S, Nemoz M, Aulagnier S (2010) Activity and foraging habitats of Miniopterus schreibersii (Chiroptera: Miniopteridae) in southern France: implications for its conservation. Hystrix, Ital J Mammal 22:57–72Google Scholar
  77. Wada H, Yates DE, Evers DC et al (2010) Tissue mercury concentrations and adrenocortical responses of female big brown bats (Eptesicus fuscus) near a contaminated river. Ecotoxicology 19:1277–1284. doi: 10.1007/s10646-010-0513-0 CrossRefGoogle Scholar
  78. Wannag A (1976) The importance of organ blood mercury when comparing foetal and maternal rat organ distribution of mercury after methyl mercury exposure. Acta Pharmacol Toxicol (Copenh) 38:289–298. doi: 10.1111/j.1600-0773.1976.tb03123.x CrossRefGoogle Scholar
  79. Ward DM, Nislow KH, Folt CL (2010) Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Ann N Y Acad Sci 1195:62–83CrossRefGoogle Scholar
  80. Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160. doi: 10.1002/etc.5620170203 CrossRefGoogle Scholar
  81. Wren CD (1986) A review of metal accumulation and toxicity in wild mammals: I. Mercury. Environ Res 40(1):210–244. doi: 10.1016/S0013-9351(86)80098-6
  82. Yang MG, Krawford KS, Garcia JD et al (1972) Deposition of mercury in foetal and maternal brain. Exp Biol Med 141:1004–1007. doi: 10.3181/00379727-141-36920 CrossRefGoogle Scholar
  83. Yates DE, Adams EM, Angelo SE et al (2014) Mercury in bats from the northeastern United States. Ecotoxicology 23:45–55. doi: 10.1007/s10646-013-1150-1 CrossRefGoogle Scholar
  84. Yoshida M, Satoh M, Shimada A et al (2002) Maternal-to-fetus transfer of mercury in metallothionein-null pregnant mice after exposure to mercury vapor. Toxicology 175:215–222. doi: 10.1016/S0300-483X(02)00084-7 CrossRefGoogle Scholar
  85. Zukal J, Pikula J, Bandouchova H (2015) Bats as bioindicators of heavy metal pollution: history and prospect. Mamm Biol 80:220–227CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fulgencio Lisón
    • 1
    • 2
  • Silvia Espín
    • 3
    • 4
    Email author
  • Bárbara Aroca
    • 3
  • José F. Calvo
    • 1
  • Antonio J. García-Fernández
    • 3
  1. 1.Department of Ecology and Hydrology, Faculty of BiologyUniversity of MurciaMurciaSpain
  2. 2.Laboratorio de Ecología del Paisaje Forestal, Departamento de Ciencias ForestalesUniversidad de La FronteraTemucoChile
  3. 3.Department of Toxicology, Faculty of Veterinary MedicineUniversity of MurciaMurciaSpain
  4. 4.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland

Personalised recommendations