Skip to main content

Spatio-temporal variability of fluorescent dissolved organic matter in the Rhône River delta and the Fos-Marseille marine area (NW Mediterranean Sea, France)

Abstract

The spatio-temporal variability of fluorescent dissolved organic matter (FDOM) and its relationships with physical (temperature, salinity) and chemical (nutrients, chlorophyll a, dissolved and particulate organic carbon, nitrogen and phosphorus) parameters were investigated in inland waters of the Rhône River delta and the Fos-Marseille marine area (northwestern Mediterranean, France). Samples were taken approximately twice per month in two inland sites and three marine sites from February 2011 to January 2012. FDOM was analysed using fluorescence excitation-emission matrices (EEMs) coupled with parallel factor analysis (PARAFAC). In inland waters, humic-like components C1 (λExEm: 250 (330)/394 nm) and C3 (λExEm: 250 (350)/454 nm) dominated over one tryptophan-like component C2 (λExEm: 230 (280)/340 nm), reflecting a background contribution of terrigenous material (~67% of total fluorescence intensity, in quinine sulphate unit (QSU)) throughout the year. In marine waters, protein-like material, with tyrosine-like C4 (λExEm: <220 (275)/<300 nm) and tryptophan-like C5 (λExEm: 230 (280)/342 nm), dominated (~71% of total fluorescence intensity, in QSU) over a single humic-like component C6 (λExEm: 245 (300)/450 nm). In inland waters of the Rhône River delta, humic-like components C1 and C3 were more abundant in autumn-winter, very likely due to inputs of terrestrial organic matter from rainfalls, runoffs and wind-induced sediment resuspension. In marine sites, intrusions of the Berre Lagoon and Rhône River waters had a significant impact on the local biogeochemistry, leading to higher fluorescence intensities of humic- and protein-like components in spring-summer. On average, the fluorescence intensities of FDOM components C4, C5 and C6 increased by 33–81% under lower salinity. This work highlights the complex dynamics of FDOM in coastal waters and confirms the link between marine FDOM and the Rhône River freshwater intrusions on larger spatial and temporal scales in the Fos-Marseille marine area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akkanen J, Vogt RD, Kukkonen JVK (2004) Essential characteristics of natural dissolved organic matter affecting the sorption of hydrophobic organic contaminants. Aquat Sci 66:171–177

    CAS  Article  Google Scholar 

  2. Andrew AA, Del Vecchio R, Subramaniam A, Blough NV (2013) Chromophoric dissolved organic matter (CDOM) in the equatorial Atlantic Ocean: optical properties and their relation to CDOM structure and source. Mar Chem 148:33–43

    CAS  Article  Google Scholar 

  3. Banas D, Grillas P, Auby I, Lescuyer F, Coulet E, Moreteau JC, Millet B (2005) Short time scale changes in underwater irradiance in a wind-exposed lagoon (Vaccarès lagoon, France): efficiency of infrequent field measurements of water turbidity or weather data to predict irradiance in the water column. Hydrobiologia 551:3–16

    Article  Google Scholar 

  4. Boutron O, Bertrand O, Fiandrino A, Höhener P, Sandoz A, Chérain Y, Coulet E, Chauvelon P (2015) An unstructured numerical model to study wind-driven circulation patterns in a managed coastal Mediterranean wetland: the Vaccarès lagoon system. Water 7:5986–6016

    Article  Google Scholar 

  5. Benner R (2002) Chemical composition and reactivity. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp. 59–90

    Chapter  Google Scholar 

  6. Benner R, Louchouarn P, Amon RMW (2005) Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic. Glob Biogeochem Cycles 19:GB2025. doi:10.1029/2004GB002398

    Article  Google Scholar 

  7. Benner R, Opsahl S (2001) Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi river plume. Org Geochem 32:597–611

    CAS  Article  Google Scholar 

  8. Bittar TB, Vieira AAH, Stubbins A, Mopper K (2015) Competition between photochemical and biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa. Limnol Oceanogr 60:1172–1194

    CAS  Article  Google Scholar 

  9. Blough NV, Del Vecchio R (2002) Chromophoric DOM in the coastal environment. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp. 509–546

    Chapter  Google Scholar 

  10. Borisover M, Laor Y, Parparov A, Bukhanovsky N, Lado M (2009) Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (sea of galilee) and its catchment basin. Water Res 43:3104–3116

    CAS  Article  Google Scholar 

  11. Boyd TJ, Osburn CL (2004) Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Mar Chem 89:189–210

    CAS  Article  Google Scholar 

  12. Cammack WKL, Kalff J, Prairie YT, Smith EM (2004) Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnol Oceanogr 49:2034–2045

    Article  Google Scholar 

  13. Carlson CA (2002) Production and removal processes. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp. 91–152

    Chapter  Google Scholar 

  14. Carstea EM, Baker A, Bieroza M, Reynolds D (2010) Continuous fluorescence excitation-emission matrix monitoring of river organic matter. Water Res 44:5356–5366

    CAS  Article  Google Scholar 

  15. Cauwet G (2002) DOM in the coastal zone. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp. 579–609

    Chapter  Google Scholar 

  16. Céa B, Lefèvre D, Chirurgien L, Raimbault P, Garcia N, Charrière B, Grégori G, Ghiglione JF, Barani A, Lafont M, Van Wambeke F (2015) An annual survey of bacterial production, respiration and ectoenzyme activity in coastal NW Mediterranean waters: temperature and resource controls. Environ Sci Pollut Res 22:13654–13668

    Article  Google Scholar 

  17. Chari NVHK, Keerthi S, Sarma NS, Rao Pandi S, Chiranjeevulu G, Kiran R, Koduru U (2013) Fluorescence and absorption characteristics of dissolved organic matter excreted by phytoplankton species of western Bay of Bengal under axenic laboratory condition. J Exper Mar Biol Ecol 445:148–155

    CAS  Article  Google Scholar 

  18. Chauvelon P (1998) A wetland managed for agriculture as an interface between the Rhône river and the Vaccarès lagoon (Camargue, France): transfers of water and nutrients. Hydrobiologia 373(374):181–191

    Article  Google Scholar 

  19. Chauvelon P, Tournoud MG, Sandoz A (2003) Integrated hydrological modelling of a managed coastal Mediterranean wetland (Rhone delta, France): initial calibration. Hydrol Earth Syst Sci Discuss 7:123–132

    Article  Google Scholar 

  20. Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar Chem 51:325–346

    CAS  Article  Google Scholar 

  21. Coble PG (2007) Marine optical biogeochemistry – the chemistry of ocean color. Chem Rev 107:402–418

    CAS  Article  Google Scholar 

  22. Comoretto L, Arfib B, Chiron S (2007) Pesticides in the Rhône river delta (France): basic data for a field-based exposure assessment. Sci Tot Environ 380:124–132

    CAS  Article  Google Scholar 

  23. Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149

    CAS  Article  Google Scholar 

  24. De Groot CJ, Golterman H (1999) Le risque d’eutrophisation de l'Etang de Vaccarès et des marais de la Camargue (Delta du Rhône, France). Ecologie 30:91–100

    Google Scholar 

  25. Delpy F, Pagano M, Blanchot J, Carlotti F, Thibault-Botha D (2012) Man-induced hydrological changes, metazooplankton communities and invasive species in the Berre Lagoon (Mediterranean Sea, France). Mar Pollut Bull 64:1921–1932

    CAS  Article  Google Scholar 

  26. Determann S, Lobbes JM, Reuter R, Rullkötter J (1998) Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Mar Chem 62:137–156

    CAS  Article  Google Scholar 

  27. Diaz SB, Morrow JH, Booth CR (2000) UV physics and optics. In: de Mora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp. 35–71

    Chapter  Google Scholar 

  28. Dittmar T, Stubbins A (2014) Dissolved organic matter in aquatic systems. Treatise on Geochemistry, Second edition, pp. 125–156

  29. Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–2462

    CAS  Article  Google Scholar 

  30. Ferretto N, Tedetti M, Guigue C, Mounier S, Redon R, Goutx M (2014) Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation-emission matrices and parallel factor analysis. Chemosphere 107:344–353

    CAS  Article  Google Scholar 

  31. Fichot CG, Benner R (2014) The fate of terrigenous dissolved organic carbon in a river-influenced ocean margin. Glob Biogeochem Cycles 28:300–318

    CAS  Article  Google Scholar 

  32. Fichot CG, Lohrenz SE, Benner R (2014) Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico. J Geophys Res Oceans:119. doi:10.1002/2013JC009424

  33. Fraysse M, Pairaud I, Ross ON, Faure VM, Pinazo C (2014) Intrusion of Rhone River diluted water into the Bay of Marseille: generation processes and impacts on ecosystem functioning. J Geophys Res 119:6535–6556

    Article  Google Scholar 

  34. Guigue C, Tedetti M, Ferretto N, Garcia N, Méjanelle L, Goutx M (2014) Spatial and seasonal variabilities of dissolved hydrocarbons in surface waters from the northwestern Mediterranean Sea: results from one year intensive sampling. Sci Tot Environ 466–467:650–662

    Article  Google Scholar 

  35. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean. A controversy stimulates new insights Oceanography 22:52–61

    Google Scholar 

  36. Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212

    CAS  Article  Google Scholar 

  37. Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969

    Article  Google Scholar 

  38. Hirose K (2007) Metal–organic matter interaction: ecological roles of ligands in oceanic DOM. Appl Geochem 22:1636–1645

    CAS  Article  Google Scholar 

  39. Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347

    CAS  Article  Google Scholar 

  40. Hudson N, Baker A, Reynolds D (2007) Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Res Appl 23:631–649

    Article  Google Scholar 

  41. Huguet A, Vacher L, Saubusse S, Etcheber H, Abril G, Relexans S, Ibalot F, Parlanti (2010) New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters. Org Geochem 41:595–610

    CAS  Article  Google Scholar 

  42. Ishii SKL, Boyer TH (2012) Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review. Environ Sci Technol 46:2006–2017

    CAS  Article  Google Scholar 

  43. Jaffé R, McKnight DM, Maie N, Cory RM, McDowell WH, Campbell JL (2008) Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties. J Geophys Res 113:G04032. doi:10.1029/2008JG000683

    Article  Google Scholar 

  44. Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F, Azam F (2010) Microbial production ofrecalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599

    CAS  Article  Google Scholar 

  45. Joliffe IT (1986) Principal component analysis. Springer-Verlag, p. 271

  46. Jørgensen L, Stedmon CA, Kragh T, Markager S, Middelboe M, Søndergaard M (2011) Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar Chem 126:139–148

    Article  Google Scholar 

  47. Kowalczuk P, Durako MJ, Young H, Kahn AE, Cooper WJ, Gonsior M (2009) Characterization of dissolved organic matter fluorescence in the South Atlantic bight with use of PARAFACmodel: interannual variability. Mar Chem 113:182–196

    CAS  Article  Google Scholar 

  48. Krachler R, Krachler RF, Wallner G, Hann S, Laux M, Cervantes Recalde MF, Jirsa F, Neubauer E, von der Kammer F, Hofmann T, Keppler BK (2015) River-derived humic substances as iron chelators in seawater. Mar Chem 174:85–93

    CAS  Article  Google Scholar 

  49. Kuwahara VS, Nozaki S, Nakano J, Toda T, Kikuchi T, Taguchi S (2015) 18-year variability of ultraviolet radiation penetration in the mid-latitude coastal waters of the western boundary Pacific. Estuar Coast Shelf Sci 160:1–9

    CAS  Article  Google Scholar 

  50. Lønborg C, Álvarez-Salgado XA, Davidson K, Martínez-García S, Teira E (2010) Assessing the microbial bioavailability and degradation rate constants of dissolved organic matter by fluorescence spectroscopy in the coastal upwelling system of the Ría de Vigo. Mar Chem 119:121–129

    Article  Google Scholar 

  51. Lønborg C, Álvarez-Salgado XA, Davidson K, Miller AEJ (2009) Production of bioavailable and refractory dissolved organic matter by coastal heterotrophic microbial populations. Estuar Coast Shelf Sci 82:682–688

    Article  Google Scholar 

  52. Luciani X, Mounier S, Paraquetti HHM, Redon R, Lucas Y, Bois A, Lacerda LD, Raynaud M, Ripert M (2008) Tracing of dissolved organic matter from the Sepetiba Bay (Brazil) by PARAFAC analysis of total luminescence matrices. Mar Environ Res 65:148–157

    CAS  Article  Google Scholar 

  53. Ludwig W, Dumont E, Meybeck M, Heussner S (2009) River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Progr Oceanogr 80:199–217

    Article  Google Scholar 

  54. Maie N, Scully NM, Pisani O, Jaffé R (2007) Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res 41:563–570

    CAS  Article  Google Scholar 

  55. Millet B, Robert C, Grillas P, Coughlan C, Banas D (2010) Numerical modelling of vertical suspended solids concentrations and irradiance in a turbid shallow system (Vaccares, Se France). Hydrobiologia 638:161–179

    Article  Google Scholar 

  56. Mopper K, Kieber DJ (2002) Photochemistry and the cycling of carbon, Sulphur, nitrogen and phosphorus. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp. 455–507

    Chapter  Google Scholar 

  57. Mopper K, Kieber DJ, Stubbins A (2015) Marine photochemistry: processes and impacts. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter, 2nd edn. Academic Press, Burlington, pp. 389–450

    Chapter  Google Scholar 

  58. Moutin T, Raimbault P, Golterman HL, Coste B (1998) The input of nutrients by the Rhône river into the Mediterranean Sea: recent observations and comparison with earlier data. Hydrobiologia 373(374):237–246

    Article  Google Scholar 

  59. Murphy KR, Bro R, Stedmon CA (2014) Chemometric analysis of organic matter fluorescence. In: Coble PG, Lead J, Baker A, Reynolds DM, Spencer RGM (eds) Aquatic Organic Matter Fluorescence. Cambridge University Press, New York, pp. 339–375

    Chapter  Google Scholar 

  60. Murphy KR, Butler KD, Spencer RGM, Stedmon CA, Boehme JR, Aiken GR (2010) Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ Sci Technol 44:9405–9412

    CAS  Article  Google Scholar 

  61. Murphy KR, Stedmon CA, Waite TD, Ruiz GM (2008) Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar Chem 108:40–58

    CAS  Article  Google Scholar 

  62. Nagata T (2000) Production mechanisms of dissolved organic matter. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp. 121–152

    Google Scholar 

  63. Nelson NB, Siegel DA (2013) The global distribution and dynamics of chromophoric dissolved organic matter. Annu Rev Mar Sci 5:447–476

    Article  Google Scholar 

  64. Nieto-Cid M, Álvarez-Salgado XA, Pérez FF (2006) Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnol Oceanogr 51:1391–1400

    CAS  Article  Google Scholar 

  65. Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36:742–746

    CAS  Article  Google Scholar 

  66. Ortega-Retuerta E, Frazer TK, Duarte CM, Ruiz-Halpern S, Tovar-Sanchez A, Arrieta JM, Reche I (2009) Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the Southern Ocean. Limnol Oceanogr 54:1941–1950

    CAS  Article  Google Scholar 

  67. Osburn CL, Boyd TJ, Montgomery MT, Bianchi TS, Coffin RB, Paerl HW (2016) Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Front Mar Sci 2:127. doi:10.3389/fmars. 2015.00127

    Article  Google Scholar 

  68. Pairaud IL, Gatti J, Bensoussan N, Verney R, Garreau P (2011) Hydrology and circulation in a coastal area off Marseille: validation of a nested 3D model with observations. J Mar Syst 88:20–33

    Article  Google Scholar 

  69. Panagiotopoulos C, Sempéré R, Para J, Raimbault P, Rabouille C, Charrière B (2012) The composition and flux of particulate and dissolved carbohydrates from the Rhone River into the Mediterranean Sea. Biogeoscience 9:1827–1844

    CAS  Article  Google Scholar 

  70. Para J, Coble PG, Charrière B, Tedetti M, Fontana C, Sempéré R (2010) Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea (bay of Marseilles, France). Biogeosciences 7:4083–4103

    CAS  Article  Google Scholar 

  71. Parlanti E, Wo K, Geo L, Lamotte M (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 31:1765–1781

    CAS  Article  Google Scholar 

  72. Patel-Sorrentino N, Mounier S, Benaim JY (2002) Excitation–emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers. Water Res 36:2571–2581

    CAS  Article  Google Scholar 

  73. Raimbault P, Lantoine F, Neveux J (2004) Dosage rapide de la chlorophylle a et des phéopigments a par fluorimétrie après extraction au méthanol. Comparaison avec la méthode classique d’extraction à l'acétone. Océanis 30:189–205

    Google Scholar 

  74. Raimbault P, Pouvesle W, Sempere R (1999) Wet-oxidation and automated colorimetry for simultaneous determination of organic carbon, nitrogen and phosphorus dissolved in seawater. Mar Chem 66:161–169

    CAS  Article  Google Scholar 

  75. Roche H, Vollaire Y, Martin E, Rouer C, Coulet E, Grillas P, Banas D (2009) Rice fields regulate organochlorine pesticides and PCBs in lagoons of the nature Reserve of Camargue. Chemosphere 75:526–533

    CAS  Article  Google Scholar 

  76. Rochelle-Newall EJ, Fisher TR (2002) Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton. Mar Chem 77:7–21

    CAS  Article  Google Scholar 

  77. Romera-Castillo C, Sarmento H, Alvarez-Salgado XA, Gasol JM, Marrase C (2010) Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol Oceanogr 55:446–454

    CAS  Article  Google Scholar 

  78. Rostan JC, Cellot B (1995) On the use of UV spectrophotometry to assess dissolved organic carbon origin variations in the upper Rh6ne river. Aquatic Sci 57:70–80

    Article  Google Scholar 

  79. Sempéré R, Charrière B, Van Wambeke F, Cauwet G (2000) Carbon inputs of the Rhone River to the Mediterranean Sea: biogeochemical implications. Glob Biogeochem Cy 14:669–681

    Article  Google Scholar 

  80. Siegel DA, Maritorena S, Nelson NB, Behrenfeld MJ (2005) Independence and interdependencies of global ocean color properties: reassessing the bio-optical assumption. J Geophys Res 110:C07011. doi:10.1029/2004JC002527

    Article  Google Scholar 

  81. Siegenthaler U, Sarmiento J (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    CAS  Article  Google Scholar 

  82. Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Meth 6:572–579

    CAS  Article  Google Scholar 

  83. Stedmon CA, Cory RM (2014) Biological origins and fate of fluorescent dissolved organic matter in aquatic environments. In: Coble PG, Lead J, Baker A, Reynolds DM, Spencer RGM (eds) Aquatic Organic Matter Fluorescence. Cambridge University Press, New York, pp. 278–299

    Chapter  Google Scholar 

  84. Stedmon CA, Markager S (2005a) Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol Oceanogr 50:686–697

    CAS  Article  Google Scholar 

  85. Stedmon CA, Markager S (2005b) Resolving the variability of dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697

    CAS  Article  Google Scholar 

  86. Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254

    CAS  Article  Google Scholar 

  87. Steinberg DK, Nelson N, Carlson C, Prusak AC (2004) Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium spp. Mar Ecol Prog Ser 267:45–56

    CAS  Article  Google Scholar 

  88. Tedetti M, Guigue C, Goutx M (2010) Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters. Mar Pollut Bull 60:350–362

    CAS  Article  Google Scholar 

  89. Tedetti M, Longhitano R, Garcia N, Guigue C, Ferretto N, Goutx M (2012) Fluorescence properties of dissolved organic matter in coastal Mediterranean waters influenced by a municipal sewage effluent (Bay of Marseilles, France). Environ Chem 9:438–449

    CAS  Article  Google Scholar 

  90. Tedetti M, Sempéré R (2006) Penetration of ultraviolet radiation in the marine environment. A review. Photochem Photobiol 82:389–397

    CAS  Article  Google Scholar 

  91. The MerMex group (2011) Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean. Prog Oceanogr 91:97–166

    Article  Google Scholar 

  92. Tréguer P, LeCorre P (1975) Manuel d’analyses des sels nutritifs dans l’eau de mer: Utilisation de l’Autoanalyser II Technicon, 2nd edn. Université de Bretagne Occidentale, Brest

    Google Scholar 

  93. Ulses C, Grenz C, Marsaleix P, Schaaff E, Estournel C, Meulé S, Pinazo C (2005) Circulation in a semi-enclosed bay under influence of strong freshwater input. J Mar Syst 56:113–132

    Article  Google Scholar 

  94. Vaquer A, Heurteaux P (1989) Modifications récentes de la végétation aquatique de l’étang du Vaccarès (Camargue, France) liées aux perturbations anthropiques. Ann Limnol 25:25–38

    Article  Google Scholar 

  95. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    CAS  Article  Google Scholar 

  96. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Ocean 39:1985–1992

    CAS  Article  Google Scholar 

  97. Yamashita Y, Cory RM, Nishioka J, Kuma K, Tanoue E, Jaffé R (2010) Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep-Sea Res Pt II 57:1478–1485

    CAS  Article  Google Scholar 

  98. Yamashita Y, Panton A, Mahaffey C, Jaffé R (2011) Assessing the spatial and temporal variability of dissolved organic matter in Liverpool Bay using excitation–emission matrix fluorescence and parallel factor analysis. Ocean Dyn 61:569–579

    Article  Google Scholar 

  99. Yamashita Y, Tanoue E (2004) In situ production of chromophoric dissolved organic matter in coastal environments. Geophys Res Lett 31:1–4. doi:10.1029/2004GL019734

    Article  Google Scholar 

  100. Yao X, Zhang Y, Zhu G, Qin B, Feng L, Cai L, Gao G (2011) Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere 82:145–155

    CAS  Article  Google Scholar 

  101. Zhang Y, Zhang E, Yin Y, Dijk MA, Van Feng L, Shi Z (2010) Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui plateau, China, differing in trophic state and altitude. Limnol Oceanogr 55:2645–2659

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the captain and crew of the R/V Antédon 2 for their help during the sampling. We warmly thank C. Pinazo for providing satellite maps and Chritophe Yohia (OSU Pytheas) for providing Meteorological data. We acknowledge the MOOSE program (Mediterranean Oceanic Observing System on Environment) for additional rain fall and Rhône flow data. We thank D. Lefèvre and A. Robert for the use of the Shimadzu spectrophotometer as well as the core parameter analytical platform (PAPB) of the Mediterranean Institute of Oceanography (MIO) for performing chemical analyses. Two anonymous Reviewers are acknowledged for their relevant comments and corrections, which contributed to improve the quality of this manuscript. This study is part of the ‘IBISCUS’ research project that was funded by the Agence Nationale de la Recherche (ANR)—ECOTECH program (project ANR-09-ECOT-009-01). This work also contributes to the Work Package 3 of the CNRS-INSU MISTRALS ‘MERMEX’ project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marc Tedetti.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 2570 kb.)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferretto, N., Tedetti, M., Guigue, C. et al. Spatio-temporal variability of fluorescent dissolved organic matter in the Rhône River delta and the Fos-Marseille marine area (NW Mediterranean Sea, France). Environ Sci Pollut Res 24, 4973–4989 (2017). https://doi.org/10.1007/s11356-016-8255-z

Download citation

Keywords

  • Dissolved organic matter
  • Fluorescence
  • PARAFAC
  • Rhône River
  • Vaccarès pond
  • Bay of Marseille
  • Mediterranean Sea