Skip to main content

Photodegradation of ethylene by use of TiO2 sol-gel on polypropylene and on glass for application in the postharvest of papaya fruit


The papaya is a commercially important fruit commodity worldwide. Being a climacteric fruit, it is highly perishable. Thus, for the transportation of papaya fruit for long distances without loss of quality, it is necessary to avoid the autocatalytic effect of ethylene in accelerating the ripening of the fruit. This work addresses the application of heterogeneous photocatalysis to the degradation of ethylene. A TiO2 sol-gel supported on polypropylene (PP) and on glass was used as the catalytic material, and a UV-A lamp was employed as the radiation source. Initially, a concentration of 500 ppbv ethylene was exposed to the catalyst material irradiated by UV-A radiation. A sensitive photoacoustic spectrometer was used to monitor the photocatalytic activity. The TiO2 sol-gel supported on the glass substrate was more efficient than on the PP in degrading the ethylene. Under direct UV-A exposure, the skin appearance of ‘Golden’ papaya was damaged, depreciating the fruit quality and thus preventing its commercialization. However, the feasibility of the heterogeneous photocatalysis to preserve the fruit quality was achieved when ethylene was removed from the storage ambient using fans, and then, this plant hormone was degraded by a reactor set apart in a ventilation closed system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  • Ahmad A, Ali ZM, Zainal Z (2013) Delayed softening of papaya (Carica papaya L. cv. Sekaki) fruit by 1-methylcyclopropene (1-MCP) during ripening at ambient and low temperature storage conditions. Aust J Crop Sci 7:750–757

    CAS  Google Scholar 

  • Arconada N, Durán A, Suárez S, Portela R., Coronado JM, Sánchez B, Castro Y (2009) Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel 2:1–7. doi: 10.1016/j.apcatb.2008.07.021

  • Azene M, Workneh TS, Woldetsadik K (2014) Effect of packaging materials and storage environment on postharvest quality of papaya fruit. J Food Sci Technol 51:1041–1055

    CAS  Article  Google Scholar 

  • Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143–159. doi:10.1007/s00344-007-9002-y

  • Bernstein R, Thornberg SM, Irwin AN, Hochrein JM, Derzon DK, Klamo SB, Clough RL (2008) Radiation-oxidation mechanisms: volatile organic degradation products from polypropylene having selective C-13 labeling studied by GC/MS. Polym Degrad Stab 93:854–870. doi:10.1016/j.polymdegradstab.2008.01.020

    CAS  Article  Google Scholar 

  • Blankenship SM, Dole JM (2003) 1-Methylcycloprone: a review. Postharvest Biol Technol 28:1–25. doi:10.1016/S0925-5214(02)00246-6

    CAS  Article  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–40. doi:10.1146/annurev.cellbio.16.1.1

    CAS  Article  Google Scholar 

  • Breia R, Vieira S, Silva JM, Gerós H, Cunha A (2013) Mapping grape berry photosynthesis by chlorophyll fluorescence imaging: the effect of saturating pulse intensity in different tissues. Photochem Photobiol 89:579–585. doi:10.1111/php.12046

    CAS  Article  Google Scholar 

  • Bron IU, Ribeiro RV, Azollini M, Jacomino AP, Machado EC (2004) Chlorophyll fluorescence as a tool to evaluate the ripening of ‘Golden’ papaya fruit. Postharvest Biol Technol 33:163–173. doi:10.1016/j.postharvbio.2004.02.004

    CAS  Article  Google Scholar 

  • Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactive Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123:288–292. doi:10.1016/j.ijfoodmicro.2007.12.017

    CAS  Article  Google Scholar 

  • Chiara MLV, Pal S, Licciulli A, Amodio ML, Colelli G (2015) Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: effects on the ripening of mature green tomatoes. Biosyst Eng 132:61–70. doi:10.1016/j.biosystemseng.2015.02.008

    Article  Google Scholar 

  • Ching WH, Leung M, Leung DYC (2004) Solar photocatalytic degradation of gaseous formaldehyde by sol-gel TiO2 thin film enhancement of indoor air quality. Sol Energy 77:129–135. doi:10.1016/j.solener.2004.05.012

    CAS  Article  Google Scholar 

  • Correa SF, Mota L, Paiva LB, Couto FM, Silva MG, Oliveira JG, Sthel MS, Vargas H, Miklos A (2011) Effects of ozone exposure on ‘Golden’ papaya fruit by photoacoustic phase-resolved method: physiological changes associated with carbon dioxide and ethylene emission rates during ripening. J Appl Phys 109:114701. doi:10.1063/1.3592353

    Article  Google Scholar 

  • Curcio MS, Oliveira MP, Waldman WR, Canela MC (2015) TiO2 sol-gel for formaldehyde photodegradation using polymeric support: photocatalysis efficiency versus material stability. Environ Sci Pollut Res 22:800–809. doi:10.1007/s11356-014-2683-4

    CAS  Article  Google Scholar 

  • Dobrzañski B Jr, Rybczyñski R (2002) Colour change of apple as a result of storage, shelf-life, and bruising. Int Agrophysics 16:261–268

    Google Scholar 

  • Embrapa - Empresa Brasileira de Pesquisa em Agropecuária (2015). Accessed 27 december 2015.

  • Fabi JP, Cordenunsi BR, Symour GB, Lajolo FM, Nascimento JRO (2009) Molecular cloning and characterization of a ripening-induced polygalacturonase related to papaya fruit softening. Plant Physiol Biochem 47:1075–1081. doi:10.1016/j.plaphy.2009.08.002

    CAS  Article  Google Scholar 

  • Fu X, Clark LA, Zeltner WA, Anderson MA (1996) Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. J Photoch Photobio A 97:181–186. doi:10.1016/1010-6030(95)04269-5

    CAS  Article  Google Scholar 

  • Gomez MLPA, Lajolo FM, Cordenunsi BR (2002) Evolution of soluble sugars during ripening of papaya fruit and its relation to sweet taste. J Food Sci 67:442–447. doi:10.1111/j.1365-2621.2002.tb11426.x

    CAS  Article  Google Scholar 

  • Harren FJM, Bijnen FGC, Reuss J, Voesenek LACJ, Blom CWPM (1990) Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser. Appl Phys B-Photo 50:137–144

  • Hussain M, Bensaid S, Geobaldo F, Saracco G, Russo N (2011) Photocatalytic degradation of ethylene emitted by fruits with TiO2 nanoparticles. Ind Eng Chem Res 50:2536–2543. doi:10.1021/ie1005756

    CAS  Article  Google Scholar 

  • Keller N, Ducamp MN, Robert D, Keller V (2013) Ethylene removal and fresh product storage: a challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chem Rev 113:5029–5070. doi:10.1021/cr900398v

  • Kim S, Aida T, Niiyamab H (2005) Binary adsorption of very low concentration ethylene and water vapor on mordenites and desorption by microwave heating. Sep Purif Technol 45:174–182. doi:10.1016/j.seppur.2005.03.006

    CAS  Article  Google Scholar 

  • Li Q, Satur DJG, Kim H, Kim HG (2012) Preparation of sol–gel modified electrospun TiO2 nanofibers for improved photocatalytic decomposition of ethylene. Mater Lett 76:169–172. doi:10.1016/j.matlet.2012.02.081

    CAS  Article  Google Scholar 

  • Maneerat C, Hayata Y (2006a) Efficiency of TiO2 photocatalytic reaction on delay of fruit ripening and removal of off-flavors from the fruit storage atmosphere. Trans ASABE 49:833–837. doi:10.13031/2013.20467

  • Maneerat C, Hayata Y (2006b) Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Int J Food Microbiol 107:99–103. doi:10.1016/j.ijfoodmicro.2005.08.018

    CAS  Article  Google Scholar 

  • Manenoi A, Bayogan ERV, Thumdee S, Paull RE (2007) Utility of 1-methylcyclopropene as a papaya postharvest treatment. Postharvest Biol Technol 44:55–62. doi:10.1016/j.postharvbio.2006.11.005

    CAS  Article  Google Scholar 

  • Nielsen MG, Vesborg PCK, Hansen O, Chorkendorff I (2015) Removal of low concentration contaminant species using photocatalysis: elimination of ethene to sub-ppm levels with and without water vapor present. Chem Eng J 262:648–657. doi:10.1016/j.cej.2014.10.008

    CAS  Article  Google Scholar 

  • Oliveira MG, Mazorra LM, Souza AF, Silva GMC, Correa SF, Santos WC, Saraiva KDC, Teixeira AJ, Melo DF, Silva MG, Silva MAP, Arraba JDC, Costa JH, Oliveira JG (2015) Involvement of AOX and UCP pathways in the post-harvest ripening of papaya fruits. J Plant Physiol 189:42–50. doi:10.1016/j.jplph.2015.10.001

    CAS  Article  Google Scholar 

  • Oliveira-Jr LFG, Silva MG, Oliveira JM, Santos FA, Vargas H (2006) Efeito de absorvedor de etileno no armazenamento de mamão (Carica papaya L.) em diferentes temperaturas, investigado por laser fotoacústico e colorímetro de Hunter. Revista Ceres 53:486–494

    Google Scholar 

  • Park D, Zhang J, Ikeue K, Yamashita H, Anpo M (1999) Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2 Photocatalysts in the presence of O2 and H2O. J Catal 185:114–119. doi:10.1006/jcat.1999.2472

  • Philippart J-L, Posada F, Gardette J-L (1995) Mass spectroscopy analysis of volatile photoproducts in photooxidation of polypropylene. Polym Degrad Stab 49:285–290. doi:10.1016/0141-3910(95)87010-5

    CAS  Article  Google Scholar 

  • Saltveit ME (1999) Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol Technol 15:279–292. doi:10.1016/S0925-5214(98)00091-X

    CAS  Article  Google Scholar 

  • Sañudo-Barajas JA, Labavitch J, Greveb C, Osuna-Enciso T, Muy-Rangel D, Siller-Cepeda J (2009) Cell wall disassembly during papaya softening: role of ethylene in changes in composition, pectin-derived oligomers (PDOs) production and wall hydrolases. Postharvest Biol Technol 51:158–167. doi:10.1016/j.postharvbio.2008.07.018

    Article  Google Scholar 

  • Seymour GB, Ostergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241. doi:10.1146/annurev-arplant-050312-120057

  • Silva MG, Santos EO, Sthel MS, Cardoso SL, Cavalli A, Monteiro AR, Oliveira JG, Pereira MG, Vargas H (2003) Effect of heat treatment on ethylene and CO2 emissions rates during papaya (Carica papaya L.) fruit ripening. Rev Sci Instrum 74:703–705. doi:10.1063/1.1517752

  • Souza AF, Silva WB, Gonçalves YS, Silva MG, Oliveira JG (2014) Ripening physiology of varieties of papaya marketed in Brazil. Rev Bras Frutic 36:34–44. doi:10.1590/0100-2945-215/13

    Google Scholar 

  • Souza MS, Azevedo IG, Corrêa SF, Silva MG, Pereira MG, Oliveira JG (2009) Responses of 1-MCP applications in ‘golden’ papaya fruits on different maturation stages. Rev Bras Frutic 31:693–700

    Article  Google Scholar 

  • Vermeiren L, Devlieghere F, Van Beest M, Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci Technol 10:77–86. doi:10.1016/S0924-2244(99)00032-1

    CAS  Article  Google Scholar 

  • Xu Q, Anderson MA (1994) Sol-gel route to synthesis of microporous ceramic membranes: preparation and characterization of microporous TiO2 and ZrO2 xerogels. J Am Ceram Soc 77:1939–1945. doi:10.1111/j.1151-2916.1994.tb07074.x

    CAS  Article  Google Scholar 

  • Yao N, Yeung KL (2011) Investigation of the performance of TiO2 photocatalytic coatings. Chem Eng J 167:13–21. doi:10.1016/j.cej.2010.11.061

    CAS  Article  Google Scholar 

Download references


R.E.R.S. Lourenço and A.V. Oliveira are thankful for the financial support of CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and A.A.N. Linhares appreciates the fellowship provided by FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro), Brazil. J.G. Oliveira, M.G. Silva and M.C. Canela also gratefully acknowledge the support of the Brazilian funding agencies FAPERJ and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). The authors give L.A. Meirelles credit for his valuable technical assistance. Finally, the authors thank the Caliman Agrícola S/A (Linhares, Brazil) for the supply of fruit.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Maria Cristina Canela.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lourenço, R.E.R.S., Linhares, A.A.N., de Oliveira, A.V. et al. Photodegradation of ethylene by use of TiO2 sol-gel on polypropylene and on glass for application in the postharvest of papaya fruit. Environ Sci Pollut Res 24, 6047–6054 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Carica papaya L.
  • Fruit storage
  • Skin colour
  • Photocatalysis
  • UV-A radiation