Environmental Science and Pollution Research

, Volume 24, Issue 6, pp 5207–5221

A socio-scientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption

Review Article


Due to its high adaptability, cassava (Manihot esculenta Crantz) is one of the world’s most cultivated and consumed plants after maize and rice. However, there are relatively few scientific studies on this important crop. The objective of this review was therefore to summarize and discuss the available information on cassava cropping in order to promote sustainable practices in terms of production and consumption. Cassava cultivation has been expanding recently at the global scale and is widely consumed in most regions of South America, Africa, and Asia. However, it is also characterized by the presence in its roots of potentially toxic hydrocyanic acid. Furthermore, cassava can also absorb pollutants as it is currently cultivated near roads or factories and generally without consideration for potential sources of soil, water, or atmospheric pollution. Careful washing, peeling, and adequate preparation before eating are therefore crucial steps for reducing human exposure to both environmental pollutants and natural hydrocyanic acid. At present, there is not enough precise data available on this staple food crop. To improve our knowledge on the nutritive benefits versus health risks associated with cassava consumption, further research is necessary to compare cassava cultivars and precisely study the influence of preparation methods.


Cassava crops Sustainable food Pollution Human health Metal(loid) transfer 


  1. Achidi AU, Ajayi O a, Maziya-dixon B, Bokanga M (2005) The effect of processing on the nutrient content of cassava (Manihot esculenta Crantz) leaves. J Food Process Preserv 32:486–502. doi:10.1111/j.1745-4549.2007.00165.x CrossRefGoogle Scholar
  2. Addo MA (2010) Heavy metal contaminations in soil and cassava harvested near a cement processing facility in the Volta Region, Ghana: implications of health risk for the population living in the vicinity. 71–83.Google Scholar
  3. Adjei-Nsiah S, Owuraku S-D (2012) Promoting cassava as an industrial crop in Ghana: effects on soil fertility and farming system sustainability. Appl Environ Soil Sci. doi:10.1155/2012/940954 Google Scholar
  4. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risk of metals. SpringerGoogle Scholar
  5. Ano O, Eke-Okoro N, Egesi N (2013) Heavy metals (Cd, Ni and Pb) pollution effects on cassava (Manihot esculenta Crantz). Int J Biodivers Conserv 5:640–646Google Scholar
  6. Austruy A, Laplanche C, Mombo S et al (2016) Ecological changes in historically polluted soils: metal(loid) bioaccumulation in microarthropods and their impact on community structure. Geoderma 271:181–190. doi:10.1016/j.geoderma.2016.02.011 CrossRefGoogle Scholar
  7. Austruy A, Shahid M, Xiong T et al (2014) Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. J Soils Sediments 14:666–678. doi:10.1007/s11368-014-0862-z CrossRefGoogle Scholar
  8. Avoaja D, Eze V, Owunna N (2013) Microbiological and physicochemical characteristics of soil receiving palm oil mill effluent in Umuahia, Abia State, Nigeria. J Nat Sci Res 3:163–170. doi:10.12691/jaem-3-1-4 Google Scholar
  9. Azmat R, Saba H, Shabana A (2006) Phyotoxicity of Pb: I effect of Pb on germination, growth, morphology and histomorphology of Phaseolus mungo and Lens culinaris. Pakistan J Biol Sci 9:979–984. doi:10.3923/pjbs.2006.979.984 CrossRefGoogle Scholar
  10. Bassey FI, Tesi GO, Nwajei GE, Tsafe a I (2013) Assessment of heavy metal contamination in soils around cassava processing mills in sub-urban areas of Delta State, Southern Nigeria 1 * C. M. A. J Basic Appl Sci 21:96–104Google Scholar
  11. Bellotti A, Smith L, Lapointe SL (1999) Recent advances in cassava pest management. Annu Rev Entomol 44:343–370. doi:10.1146/annurev.ento.44.1.343 CrossRefGoogle Scholar
  12. Bellotti AC, Arias B (2001) Host plant resistance to whiteflies with emphasis on cassava as a case study. Crop Prot 20:813–823. doi:10.1016/S0261-2194(01)00113-2 CrossRefGoogle Scholar
  13. Best R, Henry G (1992) Cassava: towards the year 2000. In: International Network for Cassava Genetic Resources. In: Report of the First Meeting of the International Network for Cassava Genetics Resources, CIAT, Cali. Colombia. IPGRI, Rome, International Crop Network Series, pp. 3–11Google Scholar
  14. Bilen S (2010) Effect of cement dust pollution on microbial properties and enzyme activities in cultivated and no-till soils. African J Microbiol Res 4:2418–2425Google Scholar
  15. Blagbrough IS, Bayoumi SAL, Rowan MG, Beeching JR (2010) Cassava: an appraisal of its phytochemistry and its biotechnological prospects. Phytochemistry 71:1940–1951. doi:10.1016/j.phytochem.2010.09.001 CrossRefGoogle Scholar
  16. Braide O, Adetoro S (2013) Cassava flour as a resin printing paste for textile patterns, Abeokuta, Nigeria. Transnatl J Sci Technol 3:15–29Google Scholar
  17. Burns A, Gleadow R, Cliff J et al (2010) Cassava: the drought, war and famine crop in a changing world. Sustainability 2:3572–3607. doi:10.3390/su2113572 CrossRefGoogle Scholar
  18. Burns AE, Bradbury JH, Cavagnaro TR, Gleadow RM (2012) Total cyanide content of cassava food products in Australia. J Food Compos Anal 25:79–82. doi:10.1016/j.jfca.2011.06.005 CrossRefGoogle Scholar
  19. Cańigueral S, Vanaclocha B (2010) Revista de Fitoterapia: editorial. Rev Fitoter 10:103. doi:10.1002/jsfa Google Scholar
  20. Carlsson L, Mlingi N, Juma a et al (1999) Metabolic fates in humans of linamarin in cassava flour ingested as stiff porridge. Food Chem Toxicol 37:307–312. doi:10.1016/s0278-6915(99)00015-0 CrossRefGoogle Scholar
  21. Ceballos H, Iglesias C a, Pérez JC, Dixona GO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516. doi:10.1007/s11103-004-5010-5 CrossRefGoogle Scholar
  22. Chukwuma C (1995) A comparative study of cadmium, lead, zinc, pH, and bulk density from the Enyigba lead and zinc mine in two different seasons. Ecotoxicol Environ Saf 31:246–249. doi:10.1006/eesa.1995.1070 CrossRefGoogle Scholar
  23. Clinard F, Delefortrie A, Bellec S et al (2015) Enquête de pratiques agricoles et de consommation alimentaire dans les jardins ouvriers de l’agglomération de Belfort (Franche-Comté). Environnement, Risques & Santé 14:56–71. doi:10.1684/ers.2014.0754 Google Scholar
  24. Cock JH (1985) Cassava: new potential for a neglected crop. IADS devel. Westview PressGoogle Scholar
  25. Conceicao AJ da . (1979) A mandioca., 3rd edn. EMBRAPA/BNB/BRASCAN NORDESTE, TexasGoogle Scholar
  26. Cui YJ, Zhu YG, Zhai RH et al (2004) Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int 30:785–791. doi:10.1016/j.envint.2004.01.003 CrossRefGoogle Scholar
  27. Dai D, Hu Z, Pu G et al (2006) Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. Energy Convers Manag 47:1686–1699. doi:10.1016/j.enconman.2005.10.019 CrossRefGoogle Scholar
  28. Demir TA, Işikli B, Urer SM et al (2005) Nickel exposure and its effects. Biometals 18:7–13. doi:10.1007/s10534-004-1209-9 CrossRefGoogle Scholar
  29. Dhas PK, Chitra P, Jayakumar S, Mary AR (2011) Study of the effects of hydrogen cyanide exposure in cassava workers. Indian J Occup Environ Med 15:133–136. doi:10.4103/0019-5278.93204 CrossRefGoogle Scholar
  30. Dórea JG (2004) Cassava cyanogens and fish mercury are high but safely consumed in the diet of native Amazonians. Ecotoxicol Environ Saf 57:248–256. doi:10.1016/j.ecoenv.2003.12.008 CrossRefGoogle Scholar
  31. Dumat C, Pierart A, Stockachie L, Borries O, Messina M, Chevalarias F, Cazenave JM, Bertoni G (2015) Socio-scientific strategies for research and formation projects to favor sustainable urban agricultures at the global scale. International Conference on Soils in Urban, Industrial, Traffic, Mining and Military Areas, to be held in Mexico City from Sept 20th till Sept 25th, 2015Google Scholar
  32. Edori OS, Ajuru I, Harcourt P (2015) Analysis of some heavy metals (Pb, Cd, Cr, Fe, Zn) in processed cassava flour (garri) sold along the road side of a busy highway. 7:15–19.Google Scholar
  33. Ehimwenma O, Tagbo MT (2011) Determination of normal dimension of the spleen by ultrasound in an endemic tropical environment. Niger Med J 52:198–203. doi:10.4103/0300-1652.86141 CrossRefGoogle Scholar
  34. El-Abssay A, Hassanien M (2011) Health risk assessment of workers exposed to heavy metals in Cement Kiln Dust (CDK).Google Scholar
  35. El-Sharkawy MA, Hernández ADP, Hershey C (1992) Yield stability of cassava during prolonged mid-season water stress. Exp Agric 28:165–174CrossRefGoogle Scholar
  36. FAO. 1991. Racines, tubercules, plantains et bananes: dans la nutrition humaine.Google Scholar
  37. Goix S, Mombo S, Schreck E et al (2015) Field isotopic study of lead fate and compartmentalization in earthworm–soil–metal particle systems for highly polluted soil near Pb recycling factory. Chemosphere 138:10–17. doi:10.1016/j.chemosphere.2015.05.010 CrossRefGoogle Scholar
  38. Gomez G, Valdivieso M (1984) Cassava for animal feeding: effect of variety and plant age on production of leaves and roots. Anim Feed Sci Technol 11:49–55. doi:10.1016/0377-8401(84)90053-1 CrossRefGoogle Scholar
  39. González AG, Mombo S, Leflaive J et al (2015) Silver nanoparticles impact phototrophic biofilm communities to a considerably higher degree than ionic silver. Environ Sci Pollut Res Int 22:8412–8424. doi:10.1007/s11356-014-3978-1 CrossRefGoogle Scholar
  40. Guédé SS (2013) Assessment of Cyanide Content in Cassava (Manihot esculenta Crantz) Varieties and Derived Products from Senegal. Int J Nutr Food Sci 2:225. doi:10.11648/j.ijnfs.20130205.12
  41. Hart A, Oboh C, Barimalaa I, Sokari T (2005) Concentrations of trace metals (lead, iron, copper and zinc) in crops harvested in some oil prospecting locations in rivers state, NigeriaGoogle Scholar
  42. Hindy KT, Abdel Shafy HI, Farag SA (1990) The role of the cement industry in the contamination of air, water, soil and plant with vanadium in Cairo. Environ Pollut 66:195–205. doi:10.1016/0269-7491(90)90001-S CrossRefGoogle Scholar
  43. Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267. doi:10.1016/S0144-8617(00)00260-5 CrossRefGoogle Scholar
  44. Horsfall M, Abia a a, Spiff a I (2006) Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste. Bioresour Technol 97:283–291. doi:10.1016/j.biortech.2005.02.016 CrossRefGoogle Scholar
  45. Huang J, Tichit M, Poulot M et al (2015) Comparative review of multifunctionality and ecosystem services in sustainable agriculture. J Environ Manag 149:138–147. doi:10.1016/j.jenvman.2014.10.020 CrossRefGoogle Scholar
  46. Idodo-Umech G, Ogbeibu A (2010) Bioaccumulation of the heavy metals in cassava tubers and plantain fruits grown in soils impacted with petroleum and non-petroleum activities. Res J Environ Sci 4:33. doi:10.3923/rjes.2010.33.41 CrossRefGoogle Scholar
  47. IFAD; FAO (2005) A review of cassava in Africa with country case studies on Nigeria, Ghana, the United Republic of Tanzania, Uganda and Benin. Agric Consum Prot 357Google Scholar
  48. Igbinosa EO (2015) Effect of cassava mill effluent on biological activity of soil microbial community. Environ Monit Assess 187:418. doi:10.1007/s10661-015-4651-y CrossRefGoogle Scholar
  49. Isabirye M, Ruysschaert G, Van linden L et al (2007) Soil losses due to cassava and sweet potato harvesting: a case study from low input traditional agriculture. Soil Tillage Res 92:96–103. doi:10.1016/j.still.2006.01.013 CrossRefGoogle Scholar
  50. Islam AKMS, Edwards DG, Asher CJ (1980) pH optima for crop growth. Plant Soil 54:339–357. doi:10.1007/BF02181830 CrossRefGoogle Scholar
  51. Iwata K, Saito H, Moriyama M, Nakano A (1992) Follow up study of renal tubular dysfunction and mortality in residents of an area polluted with cadmium. Br J Ind Med 49:736–737Google Scholar
  52. Jakrawatana N, Pingmuangleka P, Gheewala SH (2015) Material flow management and cleaner production of cassava processing for future food, feed and fuel in Thailand. J Clean Prod:1–9. doi:10.1016/j.jclepro.2015.06.139
  53. Jones DA (1998) Why are so many food plants cyanogenic? Phytochemistry 47:155–162. doi:10.1016/S0031-9422(97)00425-1 CrossRefGoogle Scholar
  54. Kalafatoğlu E, Örs N, Özdemir SS, Munlafalioğlu I (2001) Trace element emissions from some cement plants in Turkey. Water Air Soil Pollut 129:91–100. doi:10.1023/A:1010371019712 CrossRefGoogle Scholar
  55. Kalagbor IA, Opusunju K (2015) A comparison study of dry and wet ashing methods used for the assessment of concentration of five heavy metals in three vegetables from Rivers State, Nigeria. Int Res J Public Environ Heal 2:16–22Google Scholar
  56. Kamalu BP (1995) The adverse effects of long-term cassava (Manihot esculenta Crantz) consumption. Int J Food Sci Nutr 46:65–93. doi:10.3109/09637489509003387 CrossRefGoogle Scholar
  57. Keating BA, Evenson JP (1979) Effect of soil temperature on sprouting and sprout elongation of stem cuttings of cassava (Manihot esculenta Crantz.). F Crop Res 2:241–251. doi:10.1016/0378-4290(79)90026-1 CrossRefGoogle Scholar
  58. Kolind-Hansen L, Brimer L (2010) The retail market for fresh cassava root tubers in the European Union (EU): the case of Copenhagen, Denmark—a chemical food safety issue. J Sci Food Agric 90:252–256. doi:10.1002/jsfa.3804 CrossRefGoogle Scholar
  59. Kříbek B, Majer V, Knésl I et al (2014) Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt. J African Earth Sci 99:713–723. doi:10.1016/j.jafrearsci.2014.02.009 CrossRefGoogle Scholar
  60. Latif S, Müller J (2015) Potential of cassava leaves in human nutrition: a review. Trends Food Sci Technol. doi:10.1016/j.tifs.2015.04.006 Google Scholar
  61. Leveque T, Capowiez Y, Schreck E et al (2014) Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils. Environ Pollut 191:199–206. doi:10.1016/j.envpol.2014.04.005 CrossRefGoogle Scholar
  62. Li H, Liu Y, Gao X, Li X (2015) Preparation and characterization of cassava starch-based adsorbents for separating of azeotropic ethanol-water in biofuels ethanol production. J Chem Technol Biotechnol n/a–n/a. doi:10.1002/jctb.4666 Google Scholar
  63. Lichtfouse E, Navarrete M, Debaeke P, et al. (2009) Sustainable agriculture. Springer Netherlands, DordrechtGoogle Scholar
  64. Mitchell RG, Spliethoff HM, Ribaudo LN et al (2014) Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions. Environ Pollut 187:162–169. doi:10.1016/j.envpol.2014.01.007 CrossRefGoogle Scholar
  65. Mombo S, Foucault Y, Deola F et al (2015) Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J Soils Sediments:1–11. doi:10.1007/s11368-015-1069-7
  66. Montagnac JA, Davis CR, Tanumihardjo SA (2009) Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 8:181–194. doi:10.1111/j.1541-4337.2009.00077.x CrossRefGoogle Scholar
  67. Mombo S, Schreck E, Dumat C, Laplanche C, Pierart A, Longchamp M, Besson P, Castrec-Rouelle M (2016) Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize. Environ Geochem Health 38(3):869–883Google Scholar
  68. Mortureux M (2012) Avis de l’ Agence nationale de sécurité sanitaire de l’ alimentation, de l’ environnement et du travail. In: Maisons-Alfort (ed) Maisons-Alfort. 25/06/2012, France, pp 1–17Google Scholar
  69. Moyo C, Benesi I, Sandifolo V, Teri J (1998) Current status of cassava and sweetpotato production and utilization in Malawi.Google Scholar
  70. Nambisan B (2011) Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety. Food Chem Toxicol 49:690–693. doi:10.1016/j.fct.2010.10.035
  71. Nassar N, Dorea JG (1982) Protein content of cassava cultivars and its hybrid with wild Manihot species. 32:6–8.Google Scholar
  72. Nassar NMA (1978) Conservation of the genetic resources of cassava (Manihot esculenta): determination of wild species localities with emphasis on probable origin. Econ Bot 32:311–320. doi:10.1007/BF02864705 CrossRefGoogle Scholar
  73. Ngudi DD, Kuo YH, Lambein F (2002) Food safety and amino acid balance in processed cassava “Cossettes.”. J Agric Food Chem 50:3042–3049. doi:10.1021/jf011441k CrossRefGoogle Scholar
  74. Nhassico D, Muquingue H, Cliff J et al (2008) Rising African cassava production, diseases due to high cyanide intake and control measures. J Sci Food Agric 88:2043–2049. doi:10.1002/jsfa.3337 CrossRefGoogle Scholar
  75. Nkwocha EE, Pat-Mbano E, Tony-Njoku N (2011) Assessment of heavy metal concentration in food crops grown around Etelebou oil flow station in Bayelsa. Int J Sci Nat 2:665–670Google Scholar
  76. Ntow WJ, Gijzen HJ, Kelderman P, Drechsel P (2006) Farmer perceptions and pesticide use practices in vegetable production in Ghana. Pest Manag Sci 62:356–365. doi:10.1002/ps.1178 CrossRefGoogle Scholar
  77. Oboh G, Akindahunsi AA (2003) Biochemical changes in cassava products (flour & gari) subjected to Saccharomyces cerevisae solid media fermentation. Food Chem 82:599–602. doi:10.1016/S0308-8146(03)00016-5 CrossRefGoogle Scholar
  78. OECD, 2016. Chapter three of the “Safety assessment of transgenic organisms in the environment: OECD consensus documents”, volume 6 © OECD 2016.Google Scholar
  79. Oduwaye O a, Ojo DK, Mkumbira J et al (2014) Genetic assessment of 23 cassava, Manihot esculenta Crantz. Genotypes at Two Agro-Climatic Zones in Nigeria Plant Breed Seed Sci doi. doi:10.2478/v10129-011-0073-3 Google Scholar
  80. Okorie A, Entwistle J, Dean JR (2012) Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere 86:460–467. doi:10.1016/j.chemosphere.2011.09.047 CrossRefGoogle Scholar
  81. Oliver MA (2008) Soil and human health: a review. Eur J Soil Sci 48:573–592. doi:10.1111/j.1365-2389.1997.tb00558.x CrossRefGoogle Scholar
  82. Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci U S A 96:5586–5591. doi:10.1073/pnas.96.10.5586 CrossRefGoogle Scholar
  83. Onabolu a O, Oluwole OS, Bokanga M, Rosling H (2001) Ecological variation of intake of cassava food and dietary cyanide load in Nigerian communities. Public Health Nutr 4:871–876. doi:10.1079/PHN2001127 Google Scholar
  84. Onyedika GO, Nwosu GU (2008) Lead, zinc and cadmium in root crops from mineralized galena-sphalerite mining areas and environment. Pakistan J Nutr 7:418–420. doi:10.3923/pjn.2008.418.420 CrossRefGoogle Scholar
  85. Oshunsanya SO (2016) Alternative method of reducing soil loss due to harvesting of sweet potato: a case study of low input agriculture in Nigeria. Soil Tillage Res 158:49–56. doi:10.1016/j.still.2015.11.007 CrossRefGoogle Scholar
  86. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126. doi:10.1007/s11270-007-9401-5 CrossRefGoogle Scholar
  87. Pandey A, Soccol CR, Nigam P et al (2000) Biotechnological potential of agro- -industrial residues: II cassava bagasse. Bioresour Technol 74:81–87. doi:10.1016/S0960-8524(99)00143-1 CrossRefGoogle Scholar
  88. Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234. doi:10.1016/j.jhazmat.2015.02.011 CrossRefGoogle Scholar
  89. Pourrut B, Shahid M, Dumat C et al (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. doi:10.1007/978-1-4419-9860-6_4 Google Scholar
  90. Ryser P, Sauder WR (2006) Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides. Environ Pollut 140:52–61. doi:10.1016/j.envpol.2005.06.026 CrossRefGoogle Scholar
  91. Sajid L, Joachim M (2014) Cassava—how to explore the “all-sufficient.” In: the International Journal for Rural Development. pp 30–31Google Scholar
  92. Sauer CO (1952) Agricultural origins and dispersals, American G. American Geographical Society., New YorkGoogle Scholar
  93. Schmidt C (1951) A mandioca, contribuição para o conhecimento de sua origem.Google Scholar
  94. Schreck E, Foucault Y, Geret F et al (2011) Influence of soil ageing on bioavailability and ecotoxicity of lead carried by process waste metallic ultrafine particles. Chemosphere 85:1555–1562. doi:10.1016/j.chemosphere.2011.07.059 CrossRefGoogle Scholar
  95. Schuhmacher M, Bocio A, Agramunt MC et al (2002) PCDD/F and metal concentrations in soil and herbage samples collected in the vicinity of a cement plant. Chemosphere 48:209–217. doi:10.1016/S0045-6535(02)00042-5 CrossRefGoogle Scholar
  96. Scott GJ, Rosegrant MW, Ringler C (2000) Roots and tubers for the 21st century (brief). The 2020 Vision, International Food Policy Research Institute (IFPRI), 2033 K Street, N.W., Washington, DC 20006-1002, USA/ifpri-info@cgiar.org; Centro Internacional de la Papa (CIP), Apartado 1558, Lima 12, PeruGoogle Scholar
  97. Shahid M, Dumat C, Pourrut B et al (2015a) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454. doi:10.1134/S1021443715040159 CrossRefGoogle Scholar
  98. Shahid M, Ferrand E, Schreck E, Dumat C (2013) Behavior and impact of zirconium in the soil-plant system: plant uptake and phytotoxicity. Rev Environ Contam Toxicol 221:107–127. doi:10.1007/978-1-4614-4448-0_2 Google Scholar
  99. Shahid M, Khalid S, Abbas G (2015b) Heavy metal stress and crop productivity. Crop Prod Glob Environ Issues:1–25. doi:10.1007/978-3-319-23162-4_1
  100. Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219-220Google Scholar
  101. Shahid M, Pinelli E, Pourrut B et al (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84. doi:10.1016/j.ecoenv.2010.08.037 CrossRefGoogle Scholar
  102. Sharma RK, Agrawal M, Marshall FM (2009) Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chem Toxicol 47:583–591. doi:10.1016/j.fct.2008.12.016 CrossRefGoogle Scholar
  103. Simate GS, Ndlovu S (2014) The removal of heavy metals in a packed bed column using immobilized cassava peel waste biomass. J Ind Eng Chem 21:635–643. doi:10.1016/j.jiec.2014.03.031 CrossRefGoogle Scholar
  104. Soccol CR (1996) Biotechnology products from cassava root by solid state fermentation. J Sci Ind Res 55:358–364Google Scholar
  105. Souza-Arroyo V, Martínez-Flores K, Bucio-Ortiz L et al (2012) Liver and cadmium toxicity. Drug Metab Toxicol S5:001. doi:10.4172/2157-7609.S5-001 Google Scholar
  106. Srinivas T (2007) Industrial demand for cassava starch in India. Sect Soc Sci Cent Tuber Crop Res Inst 59:477–481. doi:10.1002/star.200700657 Google Scholar
  107. Tonukari NJ, Ezedom T, Enuma CC et al (2015) White gold: cassava as an industrial base. Am J Plant Sci:972–979Google Scholar
  108. Tsegai D, Kormawa P (2002) Witzenhausen, 9–11 October 2002 Conference on International Agricultural Research for Development Determinants of urban households ’ demand for cassava and cassava products in Kaduna, northern Nigeria : the application of AIDS model. 9–11.Google Scholar
  109. Uzu G, Schreck E, Xiong T et al (2014) Urban market gardening in Africa: foliar uptake of metal(loid)s and their bioaccessibility in vegetables. Implications in Terms of Health Risks. doi:10.1007/s11270-014-2185-5 Google Scholar
  110. Uzu G, Sobanska S, Aliouane Y et al (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157:1178–1185. doi:10.1016/j.envpol.2008.09.053 CrossRefGoogle Scholar
  111. Valko M, Jomova K, Rhodes CJ, et al. (2015) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.Google Scholar
  112. Voko DRBI, Zeze A (2013) Impact Des Proprietes Physicochimiques Des Sols De Culture Du Manioc Sur L ’ Abondance Et La Diversite Des Communautes De Champignons Mycorhiziens À Arbuscules Dans La Zone Agroecologique D ’ Azaguie. Sud-Est De La Côte D ’ Ivoire 25:251–264Google Scholar
  113. White WLB (1998) Cyanogenesis in cassava. The role of hydroxynitrile lyase in root cyanide production. Plant Physiol 116:1219–1225. doi:10.1104/pp.116.4.1219 CrossRefGoogle Scholar
  114. Xiong T, Dumat C, Pierart A et al (2016) Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas. South China Environ Geochem Health:1–19. doi:10.1007/s10653-016-9796-2
  115. Xiong T, Leveque T, Austruy A, et al. (2014a) Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ Geochem Health 897–909. doi: 10.1007/s10653–014–9607-6
  116. Xiong T, Leveque T, Shahid M et al (2014c) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual 43:1593–1600. doi:10.2134/jeq2013.11.0469 CrossRefGoogle Scholar
  117. Xiong T-T, Leveque T, Austruy A et al (2014b) Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ Geochem Health 36:897–909. doi:10.1007/s10653-014-9607-6 CrossRefGoogle Scholar
  118. Yaninek JS, Schulthess F (1993) Developing an environmentally sound plant protection for cassava in Africa. Agric Ecosyst Environ 46:305–324. doi:10.1016/0167-8809(93)90032-K CrossRefGoogle Scholar
  119. Yu S, Tao J (2009) Simulation based life cycle assessment of airborne emissions of biomass-based ethanol products from different feedstock planting areas in China. J Clean Prod 17:501–506. doi:10.1016/j.jclepro.2008.08.022 CrossRefGoogle Scholar
  120. Zhang C, Han W, Jing X et al (2003) Life cycle economic analysis of fuel ethanol derived from cassava in southwest China. Renew Sust Energ Rev 7:353–366. doi:10.1016/S1364-0321(03)00057-1 CrossRefGoogle Scholar
  121. Zhu W, Lestander TA, Orberg H et al (2015) Cassava stems: a new resource to increase food and fuel production. GCB Bioenergy 7:72–83. doi:10.1111/gcbb.12112 CrossRefGoogle Scholar
  122. Ziska LH, Runion GB, Tomecek M et al (2009) An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy 33:1503–1508. doi:10.1016/j.biombioe.2009.07.014 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Université de Toulouse; INP, ENSATCastanet-Tolosan CédexFrance
  2. 2.Université de Toulouse; INP, UPS; EcoLab; ENSATCastanet-TolosanFrance
  3. 3.UMR 5044–Centre d’Etude et de Recherche Travail Organisation Pouvoir (CERTOP)Université Toulouse Jean Jaurès, Maison de la RechercheToulouse Cedex 9France
  4. 4.Department of Environmental SciencesCOMSATS Institute of Information TechnologyVehariPakistan
  5. 5.Géosciences Environnement Toulouse (GET), Observatoire Midi PyrénéesUniversité de Toulouse, CNRS, IRDToulouseFrance

Personalised recommendations