Skip to main content

Tropospheric ozone pollution in India: effects on crop yield and product quality

Abstract

Ozone (O3) in troposphere is the most critical secondary air pollutant, and being phytotoxic causes substantial losses to agricultural productivity. Its increasing concentration in India particularly in Indo-Gangetic plains is an issue of major concern as it is posing a threat to agriculture. In view of the issue of rising surface level of O3 in India, the aim of this compilation is to present the past and the prevailing concentrations of O3 and its important precursor (oxides of nitrogen) over the Indian region. The resulting magnitude of reductions in crop productivity as well as alteration in the quality of the product attributable to tropospheric O3 has also been taken up. Studies in relation to yield measurements have been conducted predominantly in open top chambers (OTCs) and also assessed by using antiozonant ethylene diurea (EDU). There is a substantial spatial difference in O3 distribution at different places displaying variable O3 concentrations due to seasonal and geographical variations. This review further recognizes the major information lacuna and also highlights future perspectives to get the grips with rising trend of ground level O3 pollution and also to formulate the policies to check the emissions of O3 precursors in India.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Agrawal M, Singh B, Rajput M, Marshall F, Bell JNB (2003) Effect of air pollution on peri-urban agriculture: a case study. Environ Pollut 126:323–329

    CAS  Article  Google Scholar 

  • Agrawal SB, Singh A, Rathore D (2004) Assessing the effects of ambient air pollution on growth, biochemical and yield characteristics of three cultivars of wheat (Triticum aestivum L.) with ethylenediurea and ascorbic acid. J Plant Biol 31:165–172

    CAS  Google Scholar 

  • Agrawal SB, Singh A, Rathore D (2005) Role of ethylenediurea (EDU) in assessing impact of ozone on Vigna radiata L. plants in a suburban area of Allahabad (India). Chemosphere 61:218–228

    CAS  Article  Google Scholar 

  • Agrawal M, Singh B, Agrawal SB, Bell JNB, Marshall F (2006) The effect of air pollution on yield and quality of mung bean grown in peri-urban areas of Varanasi. Water Air Soil Pollut 169:239–254

    CAS  Article  Google Scholar 

  • Ahammed YN, Reddy RR, Gopal KR, Narasimhulu K, Baba Basha B, Reddy LSS, Rao TVR (2006) Seasonal variation of the surface ozone and its precursor gases during 2001–2003, measured at Anantapur (14.62°N), a semi-arid site in India. Atmos Res 80:151–164

    CAS  Article  Google Scholar 

  • Ali K, Inamdar S, Beig G, Ghude S, Peshin S (2012) Surface ozone scenario at Pune and Delhi during the decade of 1990s. J Earth Syst Sci 121:373–383

    CAS  Article  Google Scholar 

  • Ambasht NK, Agrawal M (2003) Effects of enhanced UV-B radiation and tropospheric ozone on physiological and biochemical characteristics of field grown wheat. Biol Plantarum 47:625–628

    CAS  Article  Google Scholar 

  • Aneja VP, Agarwal A, Roelle PA, Phillips SB, Tong Q, Watkins N, Yablonsky R (2001) Measurement and analysis of criteria pollutants in New Delhi, India. Environ Int 27:35–42

    CAS  Article  Google Scholar 

  • Attri AK, Kumar U, Jain VK (2001) Microclimate: formation of O3 by fireworks. Nature 41:1015

    Article  CAS  Google Scholar 

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos Environ 45:2284–2296

    CAS  Article  Google Scholar 

  • Beig G, Ali K (2006) Behavior of boundary layer ozone and its precursors over a great alluvial plain of the world: Indo–Gangetic plains. Geophys Res Lett 33

  • Beig G, Brasseur GP (2006) Influence of anthropogenic emissions on troposheric ozone and its precursors over the Indian tropical region during monsoon. Geophys Res Lett 33

  • Beig G, Ghude S, Jadha DB (2007) Simultaneous measurements of ozone and its precursors on a diurnal scale at a semi urban site in India. J Atmos Chem 57:239–253

    CAS  Article  Google Scholar 

  • Berntsen T, Isaksen IS, Wang WC, Liang XZ (1996) Impacts of increased anthropogenic emissions in Asia on tropospheric ozone and climate. Tellus B 48:13–32

    Article  Google Scholar 

  • Bhatia A, Ghosh A, Kumar V, Tomer R, Singh SD, Pathak H (2011) Effect of elevated tropospheric ozone on methane and nitrous oxide emission from rice soil in North India. Agric Ecosyst Environ 144:21–28

    CAS  Article  Google Scholar 

  • Bhatia A, Kumar V, Kumar A, Tomer R, Singh B, Singh S (2013) Effect of elevated ozone and carbon dioxide interaction on growth and yield of maize. Maydica 51:291–298

    Google Scholar 

  • Bhatnagar VS (1996) Chandigarh, the city beautiful: environmental profile of a modern Indian city. APH Publishing pp 77

  • Black VJ, Black CR, Roberts JA, Stewart CA (2000) Impact of ozone on the reproductive development of plants. New Phytol 147:421–447

    CAS  Article  Google Scholar 

  • Booker F, Muntifering R, McGrath M, Burkey K, Decoteau D, Fiscus E, Manning W, Sagar K, Chappelka A, Grantz D (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 51:337–351

    CAS  Article  Google Scholar 

  • Brasseur GP, Hauglustaine DA, Walters S, Rasch PJ, Müller JF, Granier C, Tie XX (1998) MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description. J Geophys Res: Atmospheres (1984–2012) 103:28265–28289

    CAS  Article  Google Scholar 

  • Burney J, Ramanathan V (2014) Recent climate and air pollution impacts on Indian agriculture. P Natl Acad Sci USA 111:16319–16324

    CAS  Article  Google Scholar 

  • Carmichaei GR, Ferm M, Thongboonchoo N, Woo JH, Chan LY, Murano K, Viet PH, Mossberg C, Bala R, Boonjawat J, Upatum P (2003) Measurements of sulfur dioxide, ozone and ammonia concentrations in Asia, Africa, and South America using passive samplers. Atmos Environ 37:1293–1308

    Article  CAS  Google Scholar 

  • Carnahan JE, Jenner EL, Wat EKW (1978) Prevention of ozone injury in plants by a new protective chemical. Phytopathol 68:1225–1229

    CAS  Article  Google Scholar 

  • Chaudhary N, Agrawal SB (2015) The role of elevated ozone on growth, yield and seed quality amongst six cultivars of mung bean. Ecotoxicol Environ Safe 111:286–294

    CAS  Article  Google Scholar 

  • Cho K, Tiwari S, Agrawal SB, Torres NL, Agrawal M, Sarkar A, Shibato J, Agrawal GK, Kubo A, Rakwal R (2011) Tropospheric ozone and plants: absorption, responses, and consequences. Rev Environ Contam T 212:61–111

    CAS  Google Scholar 

  • IPCC Climate Change (2007) The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Collins WJ, Stevenson DS, Johnson CE, Derwent RG (1997) Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls. J Atmos Chem 26:223–274

    CAS  Article  Google Scholar 

  • Convention LRTAP (1996) Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. In: Texte 71/96. Umweltbundesamt, Berlin, Germany

    Google Scholar 

  • Debaje SB (2014) Estimated crop yield losses due to surface ozone exposure and economic damage in India. Environ Sci Pollut Res 21:7329–7338

    CAS  Article  Google Scholar 

  • Debaje SB, Kakade AD (2009) Surface ozone variability over western Maharashtra, India. J Hazard Mater 161:686–700

    CAS  Article  Google Scholar 

  • Debaje SB, Jeyakumar SJ, Ganesan K, Jadhava DB, Seetaramayya P (2003) Surface ozone measurements at tropical rural coastal station Tranquebar, India. Atmos Environ 37:4911–4916

    CAS  Article  Google Scholar 

  • Dentener F, Stevenson D, Cofala J, Mechler R, Amamm M, Bergamaschi P, Raes F, Derwent R (2005) The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030. Atmos Chem Phys 5:1731–1755

    CAS  Article  Google Scholar 

  • EANET (2006) Data report on acid deposition on east asia region 2005. Network centre of EANET, Japan. http://www.eanet.cc/. Accessed 16th Aug. 2015

  • Elampari K, Debaje SB, Jeyakumar SJ, Chithambarathanu T (2013) Measurements of ozone and its precursor nitrogen dioxide and crop yield losses due to cumulative ozone exposures over 40 ppb (AOT40) in rural coastal southern India. J Atmos Chem 70:357–371

    CAS  Article  Google Scholar 

  • Emberson LD, Buker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayshi K, Oanh OTR, Quadir QF, Wahid A (2009) A comparison of north-American and Asian exposure-response data for ozone effects on crop yields. Atmos Environ 43:1945–1953

    CAS  Article  Google Scholar 

  • Environmental protection agency (EPA) (2007) http://www.epa.gov. Accessed 9th Nov 2016

  • Feng Z, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43:1510–1519

    CAS  Article  Google Scholar 

  • Feng Z, Kobayashi K, Wang X, Feng Z (2009) A meta-analysis of responses of wheat yield formation to elevated ozone concentration. Chinese Sci Bull 54:249–255

    CAS  Article  Google Scholar 

  • Fitzgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci 14:133–139

    CAS  Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Fuhrer J, Skärby L, Ashmore MR (1997) Critical levels for ozone effects on vegetation in Europe. Environ Pollut 97:91–106

    CAS  Article  Google Scholar 

  • Galanter M, Levy H, Carmichael GR (2000) Impacts of biomass burning on tropospheric CO, NOx, and O3. J Geophys Res-Atmos 105:6633–6653

    CAS  Article  Google Scholar 

  • Garg A, Shukla RP, Bhattacharya S, Dadhwal VK (2001) Sub-region (district) and sector level SO2 and NO x emissions for India: assessment of inventories and mitigation flexibility. Atmos Environ 35:703–713

    CAS  Article  Google Scholar 

  • Gauss M, Ellingsen K, Isaksen ISA, Dentener FJ, Stevenson DS, Amann M, Cofala J (2007) Changes in nitrogen dioxide and ozone over Southeast and East Asia between year 2000 and 2030 with fixed meteorology source. Terres Atmos Ocean Sci 18:475–492

    Article  Google Scholar 

  • Ghazali NA, Ramli NA, Yahaya AS, Yusof NF, Sansuddin N, Al Madhoun WA (2010) Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques. Environ Monit Assess 165:475–489

    CAS  Article  Google Scholar 

  • Ghude SD, Jain SL, Arya BC, Beig G, Ahammed YN, Kumar A, Tyagi B (2008) Ozone in ambient air at a tropical megacity, Delhi: characteristics, trends and cumulative ozone exposure indices. J Atmos Chem 60:237–252

    CAS  Article  Google Scholar 

  • Ghude SD, Kulkarni SH, Kulkarni PS, Kanawade VP, Fadnavis S, Pokhrel S, Jena C, Beig G, Bortoli D (2011) Anomalous low tropospheric column ozone over eastern India during the severe drought event of monsoon 2002: a case study. Environ Sci Pollut Res 18:1442–1455

    CAS  Article  Google Scholar 

  • Ghude SD, Jena C, Chate DM, Beig G, Pfister GG, Kumar R, Ramanathan V (2014) Reductions in India’s crop yield due to ozone. Geophys Res Lett 41:5685–5691

    Article  Google Scholar 

  • Horaginamani MS, Ravichandran M (2010) Ambient air quality in an urban area and its effects on plants and human beings: a case study of Tiruchirappalli, India. Kathmandu Univ J Sci, Eng Technol 6:13–19

    Google Scholar 

  • Jain SL, Arya BC, Kumar A, Ghude SD, Kulkarni PS (2005) Observational study of surface ozone at New Delhi, India. Int J Remote Sens 21:3515–3526

    Article  Google Scholar 

  • Khemani LT, Momin GA, Rao PSP, Vijaykumar R, Safai PD (1995) Study of surface ozone behaviour at urban and forest sites in India. Atmos Environ 29:2021–2024

    CAS  Article  Google Scholar 

  • Kimball BA, Pinter PJ, Wall GW, Garcia RL, LaMorte RL, Jak P, Frumau KF, Vugts HF (1997) Comparisons of responses of vegetation to elevated carbon dioxide in free-air and open-top chamber facilities. Advances in carbon dioxide effects research. (advances in carbo):113–130

  • Lal S, Naja M, Subbaraya BH (2000) Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos Environ 34:2713–2724

    CAS  Article  Google Scholar 

  • Lal DM, Ghude SD, Patil SD, Kulkarni SH, Jena C, Tiwari S, Srivastava MK (2012) Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP), India. Atmos Res 116:82–92

    CAS  Article  Google Scholar 

  • Lelieveld JO, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CAM, Campos T, Hansel A (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291:1031–1036

    CAS  Article  Google Scholar 

  • Lin X, Trainer M, Liu SC (1988) On the nonlinearity of the tropospheric ozone production. J Geophys Res Atmos 93:15879–15888

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Leakey AD, Morgan PB (2005) Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philos T R Soc B 360:2011–2020

    Article  Google Scholar 

  • Lu Z, Streets DG (2012) Increase in NOx emissions from Indian thermal power plants during 1996−2010: unit-based inventories and multisatellite observations. Environ Sci Technol 46:7463–7470

    CAS  Article  Google Scholar 

  • Manning WJ, Paoletti E, Sandermann H Jr, Ernst D (2011) Ethylenediurea (EDU): a research tool, for assessment and verification of the effects of ground level ozone on plants under natural condition. Environ Pollut 159:3283–3293

    CAS  Article  Google Scholar 

  • McCrady JK, Andersen CP (2000) The effect of ozone on below-ground carbon allocation in wheat. Environ Pollut 107:465–472

    CAS  Article  Google Scholar 

  • Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    CAS  Article  Google Scholar 

  • Mishra AK, Rai R, Agrawal SB (2013) Differential response of dwarf and tall tropical wheat cultivars to elevated ozone with and without carbon dioxide enrichment: growth, yield and grain quality. Field Crop Res 145:21–32

    Article  Google Scholar 

  • Mittal ML, Hess PG, Jain SL, Arya BC, Sharma C (2007) Surface ozone in the Indian region. Atmos Environ 41:6572–6584

    CAS  Article  Google Scholar 

  • Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2006) Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol 170:333–343

    Article  Google Scholar 

  • Naja M, Lal S (2002) Surface ozone and precursor gases at Gadanki (13.5 N, 79.2 E), a tropical rural site in India. J Geophys Res-Atmos (1984–2012), 107(D14), ACH-8

  • Naja M, Lal S, Chand D (2003) Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (24.6°N, 72.7°E, 1680 m asl) in India. Atmos Environ 37:4205–4215

    CAS  Article  Google Scholar 

  • Nishanth T, Praseed KM, Rathnakaran K, Satheesh Kumar MK, Ravi Krishna R, Valsaraj KT (2012a) Atmospheric pollution in a semi-urban, coastal region in India following festival seasons. Atmos Environ 47:295–306

    CAS  Article  Google Scholar 

  • Nishanth T, Satheesh Kumar MK, Valsaraj KT (2012b) Variations in surface ozone and NOx at Kannur: a tropical, coastal site in India. J Atmos Chem 69:101–126

    CAS  Article  Google Scholar 

  • Oksanen E, Pandey V, Pandey AK, Keski-Saari S, Kontunen-Soppela S, Sharma C (2013) Impacts of increasing ozone on Indian plants. Environ Pollut 177:189–200

    CAS  Article  Google Scholar 

  • Pandey J, Agrawal M (1992) Ozone: concentration variabilities in a seasonally dry tropical climate. Environ Int 18:515–520

    CAS  Article  Google Scholar 

  • Pandey AK, Majumder B, Keski-Saari S, Kontunen-Soppela S, Pandey V, Oksanen E (2014) Differences in responses of two mustard cultivars to ethylenediurea (EDU) at high ambient ozone concentrations in India. Agric Ecosyst Environ 196:158–166

    CAS  Article  Google Scholar 

  • Pandey AK, Majumder B, Keski-Saari S, Kontunen-Soppela S, Mishra A, Sahu N, Pandey V, Oksanen E (2015) Searching for common responsive parameters for ozone tolerance in 18 rice cultivars in India: results from ethylenediurea studies. Sci Total Environ 532:230–238

    CAS  Article  Google Scholar 

  • Prather M, Gauss M, Berntsen T, Isaken I, Sundet J, Bey I, Brasseur G, Dentener F, Derwent R, Stevenson D, Grenfell L, Hauglustaine D, Horowitz L, Jacob D, Mickley L, Lawrence M, Kuhlmann RV, Muller JF, Pitari G, Rogers H, John-son M, Pyle J, Law K, Weele MV, Wild O (2003) Fresh air in the twenty-first century. Geophys Res Lett 30:72–74

    Article  Google Scholar 

  • Pulikesi M, Baskaralingam P, Rayudu VN, Elango D, Ramamurthi V, Sivanesan S (2006) Surface ozone measurements at urban coastal site Chennai, in India. J Hazard Mater B 137:1554–1559

    CAS  Article  Google Scholar 

  • Rai R, Agrawal M (2008) Evaluation of physiology and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at a rural site in India. Sci Total Environ 407:679–691

    CAS  Article  Google Scholar 

  • Rai R, Agrawal M (2012) Impact of tropospheric ozone on crop plants. P Natl A Sci India B 82:241–257

    CAS  Article  Google Scholar 

  • Rai R, Agrawal M (2014) Assessment of competitive ability of two Indian wheat cultivars under ambient O3 at different developmental stages. Environ Sci Pollut Res 21:1039–1053

    CAS  Article  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmos Environ 41:9543–9554

    CAS  Article  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2010) Threat to food security under current levels of ground level ozone: a case study for Indian cultivars of rice. Atmos Environ 44:4272–4282

    CAS  Article  Google Scholar 

  • Rai R, Rajput M, Agrawal M, Agrawal SB (2011a) Gaseous air pollutants: a review on current and future trends of emissions and impact on agriculture. J Sci Res 55:77–102

    Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2011b) Effects of ambient O3 on wheat during reproductive development: gas exchange, photosynthetic pigments, chlorophyll fluorescence, and carbohydrates. Photosynthetica 49:285–294

    CAS  Article  Google Scholar 

  • Rai R, Agrawal M, Choudhary KK, Agrawal SB, Emberson L, Buker P (2015) Application of ethylene diurea (EDU) in assessing the response of a tropical soybean cultivar to ambient O3: nitrogen metabolism, antioxidants, reproductive development and yield. Ecotox Environ Safe 112:29–38

    CAS  Article  Google Scholar 

  • Rajput M, Agrawal M (2005) Biomonitoring of air pollution in a seasonally dry tropical suburban area using wheat transplants. Environ Monit Assess 101:39–53

    CAS  Google Scholar 

  • Ramanathan V, Ramana MV (2005) Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl Geophys 162:1609–1626

    Article  Google Scholar 

  • Reddy RR, Gopal KR, Reddy LS, Narasimhulu K, Kumar KR, Ahammed YN, Reddy CVK (2008) Measurements of surface ozone at semi-arid site Anantapur (14.621°N, 77.651°E, 331 m asl) in India. J Atmos Chem 59:47–59

    CAS  Article  Google Scholar 

  • Reddy BS, Kumar KR, Balakrishnaiah G, Gopal KR, Reddy RR, Sivakumar V, Lingaswamy AP, Arafath SM, Umadevi K, Kumari SP, Ahammed YN (2012) Analysis of diurnal and seasonal behavior of surface ozone and its precursors (NOx) at a semi-arid rural site in Southern India. Aerosol Air Qual Res 12:1081–1094

    CAS  Google Scholar 

  • Roy SD, Beig G, Ghude SD (2009) Exposure-plant response of ambient ozone over the tropical Indian region. Atmos Chem Phys 9:5253–5260

    CAS  Article  Google Scholar 

  • Saha U, Talukdar S, Jana S, Maitra A (2014) Effects of air pollution on meteorological parameters during Deepawali festival over an Indian urban metropolis. Atmos Environ 98:530–539

    CAS  Article  Google Scholar 

  • Sarkar A, Agrawal SB (2010) Elevated ozone and two modern wheat cultivars: an assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environ Exp Bot 69:328–337

    CAS  Article  Google Scholar 

  • Sarkar A, Agrawal SB (2011) Evaluating the response of two high yielding Indian rice cultivars against ambient and elevated levels of ozone by using open top chambers. J Environ Manag 95:S19–S24

    Article  CAS  Google Scholar 

  • Sarkar A, Singh AA, Agrawal SB, Ahmad A, Rai SP (2015) Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotox Environ Safe 115:101–111

    CAS  Article  Google Scholar 

  • Sawada H, Kohno Y (2009) Differential ozone sensitivity of rice cultivars as indicated by visible injury and grain yield. Plant Biol 11:70–75

    CAS  Article  Google Scholar 

  • Simon H, Reff A, Wells B, Xing J, Frank N (2014) Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environ Sci Technol 49:186–195

    Article  CAS  Google Scholar 

  • Singh S, Agrawal SB (2011) Cultivar-specific response of soybean (Glycine max L.) to ambient and elevated concentrations of ozone under open top chambers. Water Air Soil Pollut 217:283–302

    CAS  Article  Google Scholar 

  • Singh A, Agrawal SB, Rathore D (2005) Amelioration of Indian urban air pollution phytotoxicity in Beta vulgaris L. by modifying NPK nutrients. Environ Pollut 134:385–395

    CAS  Article  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB (2009a) Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels. Environ Pollut 157:871–880

    CAS  Article  Google Scholar 

  • Singh E, Tiwari S, Agrawal M (2009b) Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of global climate change. Plant Biol 11:101–108

    CAS  Article  Google Scholar 

  • Singh S, Agrawal SB, Agrawal M (2009c) Differential protection of ethylenediurea against ambient ozone for five cultivars of tropical wheat. Environ Pollut 157:2359–2367

    CAS  Article  Google Scholar 

  • Singh E, Tiwari S, Agrawal M (2010a) Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agric Ecosyst Environ 135:168–177

    CAS  Article  Google Scholar 

  • Singh S, Agrawal M, Agrawal SB, Emberson L, Büker P (2010b) Use of ethylenediurea for assessing the impact of ozone on mung bean plants at a rural site in a dry tropical region of India. Int J Environ Waste Manag 5:125–139

    CAS  Article  Google Scholar 

  • Singh S, Agrawal SB, Singh P, Agrawal M (2010c) Screening three cultivars of Vigna mungo L. against ozone by application of ethylenediurea (EDU). Ecotoxicol Environ Safe 73:1765–1775

    CAS  Article  Google Scholar 

  • Singh P, Singh S, Agrawal SB, Agrawal M (2012) Assessment of the interactive effects of ambient O3 and NPK levels on two tropical mustard varieties (Brassica campestris L.) using open top chambers. Environ Monit Assess 184:5863–5874

    CAS  Article  Google Scholar 

  • Singh S, Bhatia A, Tomer R, Kumar V, Singh B, Singh SD (2013) Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Environ Monit Assess 185:6517–6529

    CAS  Article  Google Scholar 

  • Singh AA, Agrawal SB, Shahi JP, Agrawal M (2014) Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and non quality protein maize) under projected levels of ozone. Environ Sci Pollut Res 21:2628–2641

    CAS  Article  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB, Singh S, Singh A (2015a) Genotypic differences in utilization of nutrients in wheat under ambient ozone concentrations: growth, biomass and yield. Agric Ecosyst Environ 199:26–33

    CAS  Article  Google Scholar 

  • Singh AA, Singh S, Agrawal M, Agrawal SB (2015b) Assessment of ethylene diurea-induced protection in plants against ozone phytotoxicity. DM Whitacre (Ed) Rev Environ Contam T 233:129–184

    CAS  Google Scholar 

  • Sinha B, Singh Sangwan K, Maurya Y, Kumar V, Sarkar C, Chandra BP, Sinha V (2015) Assessment of crop yield losses in Punjab and Haryana using two years of continuous in-situ ozone measurements. Atmos Chem Phys 15:2355–2404

    Article  Google Scholar 

  • Streets DG, Yarber KF, Woo JH, Carmichael GR (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cy 17

  • Takigawa M, Niwano M, Akimoto H, Takahashi M, Kobayashi K (2009) Projection of surface ozone over East Asia in 2020 65:161–166.

  • Tiwari VS, Peshin S (1995) A prominent maximum in surface ozone concentration during winter months at Pune (India). Mausam 46:155–162

    Google Scholar 

  • Tiwari S, Agrawal M, Manning WJ (2005) Assessing the effects of ambient ozone on growth and productivity of two cultivars of wheat in India using three rates of application of ethylenediurea (EDU). Environ Pollut 138:153–160

    CAS  Article  Google Scholar 

  • Tiwari S, Rai R, Agrawal M (2008) Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. Int J Remote Sens 29:4499–4514

    Article  Google Scholar 

  • Tripathi R, Agrawal SB (2012) Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters. Ecotox Environ Safe 85:1–12

    CAS  Article  Google Scholar 

  • Tripathi R, Agrawal SB (2013) Interactive effect of supplemental ultraviolet-B and elevated ozone on seed yield and oil quality of two cultivars of linseed (Linum usitatissimum L.) carried out in open top chambers. J Sci Food Agric 93:1016–1025

    CAS  Article  Google Scholar 

  • Tripathi R, Sarkar A, Rai SP, Agrawal SB (2011) Supplemental ultraviolet-B and ozone: impact on antioxidants, proteome and genome of linseed (Linum usitatissimum L. cv. Padmini). Plant Biol 13:93–104

    CAS  Article  Google Scholar 

  • Trivedi S, Agrawal M (2003) Air quality status in Varanasi city. J Environ Stud Polic 6:75

    Google Scholar 

  • van der ARJ, Eskes HJ, Boersma KF, Van Noije TP, Van Roozendael M, De Smedt I, Peters DH, Meijer EW (2008) Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. J Geophys Res: Atmos 113 (D4)

  • Van Dingenen R, Dentener FJ, Frank R, Maurten CK, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    CAS  Article  Google Scholar 

  • Varshney CK, Aggarwal M (1992) Ozone pollution in the urban atmosphere of Delhi. Atmos Environ 26:291–294

    Article  Google Scholar 

  • Varshney CK, Rout C (1998) Ethylene diurea (EDU) protection against ozone injury in tomato plants at Delhi. B Environ Contam Tox 61:188–193

    CAS  Article  Google Scholar 

  • Wang X, Mauzerall DL (2004) Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos Environ 38:4383–4402

    CAS  Article  Google Scholar 

  • Yerramsetti VS, Sharma AR, Navlur NG, Rapolu V, Chitanya Dhulipala NSK, Sinha PR (2013) The impact assessment of Diwali fireworks emissions on the air quality of a tropical urban site, Hyderabad, India, during three consecutive years. Environ Monit Assess 185:7309–7325

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head of the Department of Botany, Coordinator CAS in Botany, FIST (DST), UPE (UGC) and ISLS (DBT) for all the laboratory facilities, and to the SERB (Department of Science and Technology), New Delhi, for providing financial support to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Agrawal.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, A.A., Agrawal, S.B. Tropospheric ozone pollution in India: effects on crop yield and product quality. Environ Sci Pollut Res 24, 4367–4382 (2017). https://doi.org/10.1007/s11356-016-8178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8178-8

Keywords

  • Crop productivity
  • Ethylene diurea
  • India
  • Oxides of nitrogen
  • Ozone
  • Quality
  • Yield