Green mitigation strategy for cultural heritage: bacterial potential for biocide production

Abstract

Several biosurfactants with antagonistic activity are produced by a variety of microorganisms. Lipopeptides (LPPs) produced by some Bacillus strains, including surfactin, fengycin and iturin are synthesized nonribosomally by mega-peptide synthetase (NRPS) units and they are particularly relevant as antifungal agents. Characterisation, identification and evaluation of the potentials of several bacterial isolates were undertaken in order to establish the production of active lipopeptides against biodeteriogenic fungi from heritage assets. Analysis of the iturin operon revealed four open reading frames (ORFs) with the structural organisation of the peptide synthetases. Therefore, this work adopted a molecular procedure to access antifungal potential of LPP production by Bacillus strains in order to exploit the bioactive compounds synthesis as a green natural approach to be applied in biodegraded cultural heritage context. The results reveal that the bacterial strains with higher antifungal potential exhibit the same morphological and biochemical characteristics, belonging to the genera Bacillus. On the other hand, the higher iturinic genetic expression, for Bacillus sp. 3 and Bacillus sp. 4, is in accordance with the culture antifungal spectra. Accordingly, the adopted methodology combining antifungal screening and molecular data is represent a valuable tool for quick identification of iturin-producing strains, constituting an effective approach for confirming the selection of lipopeptides producer strains.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108(2):386–395. doi:10.1111/j.1365-2672.2009.04438.x

    CAS  Article  Google Scholar 

  2. Caldeira AT, Arteiro JM, Roseiro JC, Neves J, Vicente H (2011a) An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: application to the production of anti-fungal compounds. Bioresour Technol 102(2):1496–1502. doi:10.1016/j.procbio.2011.05.016

    Article  Google Scholar 

  3. Caldeira AT, Feio SS, Arteiro JM, Coelho AV, Roseiro JC (2008) Environmental dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen patterns. J Appl Microbiol 104(3):808–816. doi:10.1111/j.1365-2672.2007.03601.x

    CAS  Article  Google Scholar 

  4. Caldeira AT, Santos Arteiro JM, Coelho AV, Roseiro JC (2011b) Combined use of LC–ESI-MS and antifungal tests for rapid identification of bioactive lipopeptides produced by Bacillus amyloliquefaciens CCMI 1051. Process Biochem 46(9):1738–1746. doi:10.1016/j.procbio.2011.05.016

    CAS  Article  Google Scholar 

  5. Cao X-H, Liao Z-Y, Wang C-L, Yang W-Y, Lu M-F (2009) Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities. Braz J Microbiol 40(2):373–379

    CAS  Article  Google Scholar 

  6. Cao Y, Xu Z, Ling N, Yuan Y, Yang X, Chen L, Shen B, Shen Q (2012) Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci Hortic 135:32–39. doi:10.1016/j.scienta.2011.12.002

    CAS  Article  Google Scholar 

  7. Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104(6):1675–1684

    CAS  Article  Google Scholar 

  8. Dehghan-Noude G, Housaindokht M, Bazzaz BS (2005) Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 43(3):272–276

    Google Scholar 

  9. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38(10):3623–3630

    CAS  Google Scholar 

  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999:95–98

    Google Scholar 

  11. Hsieh FC, Lin TC, Meng M, Kao SS (2008) Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr Microbiol 56(1):1–5. doi:10.1007/s00284-007-9003-x

    CAS  Article  Google Scholar 

  12. Hu LB, Shi ZQ, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett 272(1):91–98. doi:10.1111/j.1574-6968.2007.00743.x

    CAS  Article  Google Scholar 

  13. Joshi R, Gardener BB (2006) Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology 96(2):145–154. doi:10.1094/phyto-96-0145

    CAS  Article  Google Scholar 

  14. Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20(1):138–145

    CAS  Google Scholar 

  15. Li G, Dong Q, Ma L, Huang Y, Zhu M, Ji Y, Wang Q, Mo M, Zhang K (2014) Management of Meloidogyne incognita on tomato with endophytic bacteria and fresh residue of Wasabia japonica. J Appl Microbiol 117(4):1159–1167. doi:10.1111/jam.12590

    CAS  Article  Google Scholar 

  16. Mandal S, Sharma S, Pinnaka A, Kumari A, Korpole S (2013) Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol 13(1):152. doi:10.1186/1471-2180-13-152

    CAS  Article  Google Scholar 

  17. Mikkola R, Andersson MA, Grigoriev P, Teplova VV, Saris N-E L, Rainey FA, Salkinoja-Salonen MS (2004) Bacillus amyloliquefaciens strains isolated from moisture-damaged buildings produced surfactin and a substance toxic to mammalian cells. Arch Microbiol 181(4):314–323. doi:10.1007/s00203-004-0660-x

    CAS  Article  Google Scholar 

  18. Mohkam M, Nezafat N, Berenjian A, Mobasher MA, Ghasemi Y (2016) Identification of bacillus probiotics isolated from soil rhizosphere using 16S rRNA, recA, rpoB gene sequencing and RAPD-PCR. Probiotics Antimicrob Proteins 8(1):8–18. doi:10.1007/s12602-016-9208-z

    CAS  Article  Google Scholar 

  19. Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234(1):43–49. doi:10.16/j.femsle.2004.03.011

    CAS  Article  Google Scholar 

  20. Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90(4):622–629. doi:10.1046/j.1365-2672.2001.01290.x

    CAS  Article  Google Scholar 

  21. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062. doi:10.1111/j.1574-6976.2010.00221.x

    CAS  Article  Google Scholar 

  22. Rinta-Kanto J, Ouellette A, Boyer G, Twiss M, Bridgeman T, Wilhelm S (2005) Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environmental Science & Technology 39(11):4198–4205

    CAS  Article  Google Scholar 

  23. Roongsawang N, Washio K, Morikawa M (2010) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12(1):141–172. doi:10.3390/ijms12010141

    Article  Google Scholar 

  24. Rückert C, Blom J, Chen X, Reva O, Borriss R (2011) Genome sequence of B. amyloliquefaciens type strain DSM7 T reveals differences to plant-associated B. amyloliquefaciens FZB42. J Biotechnol 155(1):78–85. doi:10.1016/j.jbiotec.2011.01.006

    Article  Google Scholar 

  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  Google Scholar 

  26. Silva M, Pereira A, Teixeira D, Candeias A, Caldeira AT (2016) Combined use of NMR, LC-ESI-MS and antifungal tests for rapid detection of bioactive lipopeptides produced by Bacillus. Advances in Microbiology 06(10):788–796. doi:10.4236/aim.2016.610077

    Article  Google Scholar 

  27. Silva M, Rosado T, Teixeira D, Candeias A, Caldeira AT (2015) Production of green biocides for cultural heritage. Novel biotechnological solutions. Int J Conserv Sci 6 SI:519–530

    Google Scholar 

  28. Souto G, Correa O, Montecchia M, Kerber N, Pucheu N, Bachur M, Garcia A (2004) Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. J Appl Microbiol 97(6):1247–1256. doi:10.1111/j.1365-2672.2004.02408.x

    CAS  Article  Google Scholar 

  29. Stockel S, Meisel S, Elschner M, Rosch P, Popp J (2012) Identification of Bacillus anthracis via Raman spectroscopy and chemometric approaches. Anal Chem 84(22):9873–9880. doi:10.1021/ac302250t

    CAS  Article  Google Scholar 

  30. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    CAS  Article  Google Scholar 

  31. Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183(21):6265–6273. doi:10.1128/JB.183.21.6265-6273.2001

    CAS  Article  Google Scholar 

  32. van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48(3):900–907. doi:10.1128/JCM.02071-09

    Article  Google Scholar 

  33. Varadavenkatesan T, Murty VR (2013) Production and properties of a lipopeptide biosurfactant by B. subtilis subsp. inaquosorum. J Microbiol Biotechnol Res 3(4):63–73

    CAS  Google Scholar 

  34. Vardhan S, Kaushik R, Saxena AK, Arora DK (2011) Restriction analysis and partial sequencing of the 16S rRNA gene as index for rapid identification of Bacillus species. Antonie Van Leeuwenhoek 99(2):283–296. doi:10.1007/s10482-010-9487-4

    CAS  Article  Google Scholar 

  35. Vos P, Garrity G, Jones D, Krieg N R, Ludwig W, Rainey F A, Schleifer K-H, Whitman W (2011) Bergey’s manual of systematic bacteriology: volume 3: the Firmicutes. Springer Science & Business Media, Vol. 3.

  36. Xu D, Cote JC (2003) Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3′ end 16S rDNA and 5′ end 16S-23S ITS nucleotide sequences. Int J Syst Evol Microbiol 53(Pt 3):695–704. doi:10.1099/ijs.0.02346-0

    CAS  Article  Google Scholar 

  37. Yang D, Wang B, Wang J, Chen Y, Zhou M (2009) Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biol Control 51(1):61–65. doi:10.1016/j.biocontrol.2009.05.021

    Article  Google Scholar 

  38. Yao S, Gao X, Fuchsbauer N, Hillen W, Vater J, Wang J (2003) Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Curr Microbiol 47(4):272–277

    CAS  Article  Google Scholar 

  39. Zhang J, Liu J, Meng L, Ma Z, Tang X, Cao Y, Sun L (2012) Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate. J Microbiol 50(2):191–198. doi:10.1007/s12275-012-1472-3

    CAS  Article  Google Scholar 

  40. Zhao X, Zhou Z-j, Han Y, Wang Z-z, Fan J, Xiao H-z (2013) Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Microbiol Res 168(9):598–606. doi:10.1016/j.micres.2013.03.001

    CAS  Article  Google Scholar 

  41. Zwietering M, Jongenburger I, Rombouts F, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56(6):1875–1881

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the following funding sources: “HIT3CH—HERCULES Interface for Technology Transfer and Teaming in Cultural Heritage”, ref. ALT20-03-0246-FEDER-000004, and “MEDUSA—Microorganisms Monitoring and Mitigation—Developing and Unlocking Novel Sustainable Approaches”, ref. ALT20-03-0145-FEDER-000015, co-financed by the European Union through the European Regional Development Fund ALENTEJO 2020 (Regional Operational Programme of the Alentejo)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana Teresa Caldeira.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, M., Rosado, T., Teixeira, D. et al. Green mitigation strategy for cultural heritage: bacterial potential for biocide production. Environ Sci Pollut Res 24, 4871–4881 (2017). https://doi.org/10.1007/s11356-016-8175-y

Download citation

Keyword

  • Green biocides
  • Cultural heritage
  • Bacillus sp.
  • Biosurfactants
  • Lipopeptides
  • Antifungal activity
  • Peptide synthetase