Environmental Science and Pollution Research

, Volume 24, Issue 5, pp 4709–4730 | Cite as

Disability-adjusted life years and economic cost assessment of the health effects related to PM2.5 and PM10 pollution in Mumbai and Delhi, in India from 1991 to 2015

  • Kamal Jyoti Maji
  • Anil Kumar Dikshit
  • Ashok Deshpande
Research Article

Abstract

Particulate air pollution is becoming a serious public health concern in urban cities in India due to air pollution-related health effects associated with disability-adjusted life years (DALYs) and economic loss. To obtain the quantitative result of health impact of particulate matter (PM) in most populated Mumbai City and most polluted Delhi City in India, an epidemiology-based exposure–response function has been used to calculate the attributable number of mortality and morbidity cases from 1991 to 2015 in a 5-year interval and the subsequent DALYs, and economic cost is estimated of the health damage based on unit values of the health outcomes. Here, we report the attributable number of mortality due to PM10 in Mumbai and Delhi increased to 32,014 and 48,651 in 2015 compared with 19,291 and 19,716 in year 1995. And annual average mortality due to PM2.5 in Mumbai and Delhi was 10,880 and 10,900. Premature cerebrovascular disease (CEV), ischemic heart disease (IHD), and chronic obstructive pulmonary disease (COPD) causes are about 35.3, 33.3, and 22.9% of PM2.5-attributable mortalities. Total DALYs due to PM10 increased from 0.34 million to 0.51 million in Mumbai and 0.34 million to 0.75 million in Delhi from average year 1995 to 2015. Among all health outcomes, mortality and chronic bronchitis shared about 95% of the total DALYs. Due to PM10, the estimated total economic cost at constant price year 2005 US$ increased from 2680.87 million to 4269.60 million for Mumbai City and 2714.10 million to 6394.74 million for Delhi City, from 1995 to 2015, and the total amount accounting about 1.01% of India’s gross domestic product (GDP). A crucial presumption is that in 2030, PM10 levels would have to decline by 44% (Mumbai) and 67% (Delhi) absolutely to maintain the same health outcomes in year 2015 levels. The results will help policy makers from pollution control board for further cost–benefit analyses of air pollution management programs in Mumbai and Delhi.

Keywords

Particulate matter (PM) Health endpoints Premature mortality Disability-adjusted life years Economic cost 

References

  1. Anenberg SC, Talgo K, Arunachalam S, Dolwick P, Jang C, West JJ (2011) Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality. Atmos Chem Phys 11:7253–7267. doi: 10.5194/acp-11-7253-2011 CrossRefGoogle Scholar
  2. Apte JS, Marshall JD, Cohen AJ, Brauer M (2015) Addressing global mortality from ambient PM2.5. Environ Sci Technol 49:8057–8066. doi: 10.1021/acs.est.5b01236 CrossRefGoogle Scholar
  3. Bateman IJ, Brouwer R, Ferrini S, Schaafsma M, Barton DN, Dubgaard A, Hasler B, Hime S, Liekens I, Navrud S, De Nocker L, Ščeponavičiūtė R, Semėnienė D (2011) Making benefit transfers work: deriving and testing principles for value transfers for similar and dissimilar sites using a case study of the non-market benefits of water quality improvements across Europe. Environ Resour Econ 50:365–387. doi: 10.1007/s10640-011-9476-8 CrossRefGoogle Scholar
  4. Barmpadimos I, Keller J, Oderbolz D, Hueglin C, Prévôt ASH (2012) One decade of parallel fine (PM2.5) and coarse (PM10–PM2.5) particulate matter measurements in Europe: trends and variability. Atmos Chem Phys 12:3189–3203. doi: 10.5194/acp-12-3189-2012 CrossRefGoogle Scholar
  5. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B et al (2014) Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet (London, England) 383:785–795. doi: 10.1016/S0140-6736(13)62158-3 CrossRefGoogle Scholar
  6. Brauer, M., Amann, M., Burnett, R.T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S.B., Krzyzanowski, M., Martin, R. V, Van Dingenen, R., van Donkelaar, A., Thurston, G.D., 2012. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol 46, 652–660. doi: 10.1021/es2025752
  7. Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin RV, Dentener F et al (2015) Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol 50:79–88. doi: 10.1021/acs.est.5b03709 CrossRefGoogle Scholar
  8. Bickel P, Friedrich R (2005) ExternE—externalities of energy: methodology 2005 update. EUR 21951 European Commission, LuxembourgGoogle Scholar
  9. Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet (London, England) 360:1233–1242. doi: 10.1016/S0140-6736(02)11274-8 CrossRefGoogle Scholar
  10. Burnett RT, Pope C, Arden I, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR, Smith KR, Balmes JR, Bruce NG, Kan H, Laden F, Prüss-Ustün A, Turner MC, Gapstur SM, Diver WR, Cohen A (2014) An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect 122. doi: 10.1289/ehp.1307049
  11. Cesaroni G, Forastiere F, Stafoggia M, Andersen ZJ, Badaloni C, Beelen R et al (2014) Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE project. BMJ 348:f7412. doi: 10.1136/bmj.f7412 CrossRefGoogle Scholar
  12. Chowdhury S, Dey S (2016) Cause-specific premature death from ambient PM2.5 exposure in India: estimate adjusted for baseline mortality. Environ Int 91:283–290. doi: 10.1016/j.envint.2016.03.004 CrossRefGoogle Scholar
  13. Cifuentes LA, Vega J, Köpfer K, Lave LB (2000) Effect of the fine fraction of particulate matter versus the coarse mass and other pollutants on daily mortality in Santiago. Chile J Air Waste Manage Assoc 50:1287–1298. doi: 10.1080/10473289.2000.10464167 CrossRefGoogle Scholar
  14. CPCB (2011) Air quality monitoring, emission inventory and source apportionment study for Indian cities national summary report. Central pollution control board [Available at: http://www.cpcb.nic.in/FinalNationalSummary.pdf]
  15. CPCB (2012) Epidemiological study on effect of air pollution on human health (adults) in Delhi. Central pollution control board, environmental health management series: EHMS/01/2012 [Available at: http://cpcb.nic.in/upload/NewItems/NewItem_161_Adult.pdf]
  16. Cropper ML, Gamkhar S, Malik K, Limonov A, Partridge I (2012) The health effects of coal electricity generation in India. Resour Futur Discuss. doi: 10.2139/ssrn.2093610 Google Scholar
  17. Cropper ML, Simon NB, Alberini A, Arora S, Sharma PK, Cropper ML, Simon NB, Alberini A, Arora S, Sharma PK (1997) The health in benefits of air pollution control in Delhi. Am J Agric Econ 79:1625–1629CrossRefGoogle Scholar
  18. Dey S, Di Girolamo L (2010) A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000–2008) of Multiangle Imaging Spectroradiometer (MISR) data. J Geophys Res 115:D15204. doi: 10.1029/2009JD013395 CrossRefGoogle Scholar
  19. Dey S, Di Girolamo L, van Donkelaar A, Tripathi SN, Gupta T, Mohan M (2012) Variability of outdoor fine particulate (PM2.5) concentration in the Indian subcontinent: a remote sensing approach. Remote Sens. Environment 127:153–161. doi: 10.1016/j.rse.2012.08.021 Google Scholar
  20. Dholakia HH, Bhadra D, Garg A (2014) Short term association between ambient air pollution and mortality and modification by temperature in five Indian cities. Atmos Environ 99:168–174. doi: 10.1016/j.atmosenv.2014.09.071 CrossRefGoogle Scholar
  21. DTP (2016) Delhi traffic basic facts: statistics. Delhi traffic police [Available at: http://www.cpcb.nic.in/FinalNationalSummary.pdf]
  22. Ellis P, Roberts M (2016) Leveraging urbanization in South Asia: managing spatial transformation for prosperity and livability. The World Bank, South Asia development matters. Washington, DC. doi: 10.1596/978–1–4648-0662-9
  23. Foster A, Kumar N (2011) Health effects of air quality regulations in Delhi, India. Atmos Environ 45(1994):1675–1683. doi: 10.1016/j.atmosenv.2011.01.005 CrossRefGoogle Scholar
  24. Gargava P, Chow CJ, John GW, Douglas HL (2014) Speciated PM10 emission inventory for Delhi. India Aerosol Air Qual Res 14:1515–1526. doi: 10.4209/aaqr.2013.02.0047 Google Scholar
  25. Ghose MK, Paul R, Banerjee RK (2005) Assessment of the status of urban air pollution and its impact on human health in the city of Kolkata. Environ Monit Assess 108:151–167. doi: 10.1007/s10661-005-3965-6 CrossRefGoogle Scholar
  26. Ghosh A, Mukherji A (2014) Air pollution and respiratory ailments among children in urban India: exploring causality. Econ Dev Cult Change 63:191–222. doi: 10.1086/677754 CrossRefGoogle Scholar
  27. GI (2015) Report of the steering committee on air pollution and health related issues. Government of India: ministry of health and family welfare. F. No. T.21022/41/2013-NCD [Available at: http://mohfw.nic.in/WriteReadData/l892s/5412023661450432724.pdf]
  28. Gurjar BR, Jain A, Sharma A, Agarwal A, Gupta P, Nagpure AS, Lelieveld J (2010) Human health risks in megacities due to air pollution. Atmos Environ 44:4606–4613. doi: 10.1016/j.atmosenv.2010.08.011 CrossRefGoogle Scholar
  29. Guttikunda SK, Goel R (2013) Health impacts of particulate pollution in a megacity—Delhi. India Environ Dev 6:8–20. doi: 10.1016/j.envdev.2012.12.002 CrossRefGoogle Scholar
  30. Guttikunda SK, Goel R, Pant P (2014) Nature of air pollution, emission sources, and management in the Indian cities. Atmos Environ 95:501–510. doi: 10.1016/j.atmosenv.2014.07.006 CrossRefGoogle Scholar
  31. Guttikunda SK, Jawahar P (2014) Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmos Environ 92:449–460. doi: 10.1016/j.atmosenv.2014.04.057 CrossRefGoogle Scholar
  32. Hammitt JK, Robinson LA (2011) The income elasticity of the value per statistical life: transferring estimates between high and low income populations. J Benefit-Cost Anal 2. doi: 10.2202/2152-2812.1009
  33. Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, Vineis P, Forastiere F, Saldiva P, Yorifuji T, Loomis D (2014) Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect 122:906–911. doi: 10.1289/ehp.1408092 Google Scholar
  34. HEI (2011) Coordinated studies of short-term exposure to air pollution and daily mortality in two Indian cities. Public Health and Air Pollution in Asia (PAPA), research report 157. Health effects institute, Boston, MA. [Available at: http://pubs.healtheffects.org/getfile.php?u=623]
  35. Huang D, Xu J, Zhang S (2012) Valuing the health risks of particulate air pollution in the Pearl River Delta. China Environ Sci Policy 15:38–47. doi: 10.1016/j.envsci.2011.09.007 CrossRefGoogle Scholar
  36. IHME (2016) Poor air quality kills 5.5 million worldwide annually. Institute for health metrics and evaluation [Available at: http://www.healthdata.org/news-release/poor-air-quality-kills-55-million-worldwide-annually]
  37. IHME (2013) Global burden of disease 2010. Institute for health metrics and evaluation [Available at: http://www.cseindia.org/userfiles/global_burden_aaron.pdf]
  38. Johnston RJ, Rolfe J, Rosenberger RS, Brouwer R (eds) (2015) Benefit transfer of environmental and resource values: a guide for researchers and practitioners. Springer, DordrechtGoogle Scholar
  39. Johns DO, Stanek LW, Walker K, Benromdhane S, Hubbell B, Ross M, Devlin RB, Costa DL, Greenbaum DS (2012) Practical advancement of multipollutant scientific and risk assessment approaches for ambient air pollution. Environ Health Perspect 120:1238–1242. doi: 10.1289/ehp.1204939 CrossRefGoogle Scholar
  40. Kan H, Chen B (2004) Particulate air pollution in urban areas of Shanghai China: health-based economic assessment. Sci Total Environ 322:71–79. doi: 10.1016/j.scitotenv.2003.09.010 CrossRefGoogle Scholar
  41. Kochi I, Donovan GH, Champ PA, Loomis JB (2010) The economic cost of adverse health effects from wildfire-smoke exposure: a review. Int J Wildl Fire 19:803. doi: 10.1071/WF09077 CrossRefGoogle Scholar
  42. Korek MJ, Bellander TD, Lind T, Bottai M, Eneroth KM, Caracciolo B, de Faire UH, Fratiglioni L, Hilding A, Leander K, Magnusson PKE, Pedersen NL, Östenson C-G, Pershagen G, Penell JC (2015) Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm. J Expo Sci Environ Epidemiol 25:517–523. doi: 10.1038/jes.2015.22 CrossRefGoogle Scholar
  43. Laxminarayan R, Klein E, Dye C, Floyd K, Darley S, Adeyi O (2007) Economic benefit of tuberculosis control. The World Bank, policy research working paper 4295 [Available at: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2007/08/01/000158349_20070801103922/Rendered/PDF/wps4295.pdf]
  44. Lelieveld J, Barlas C, Giannadaki D, Pozzer A (2013) Model calculated global, regional and megacity premature mortality due to air pollution. Atmos Chem Phys 13:7023–7037. doi: 10.5194/acp-13-7023-2013 CrossRefGoogle Scholar
  45. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371. doi: 10.1038/nature15371 CrossRefGoogle Scholar
  46. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2224–2260. doi: 10.1016/S0140-6736(12)61766-8 CrossRefGoogle Scholar
  47. Lvovsky Kseniya, Gughes Gordon, Maddison David, Ostro Bart, Pearce David 2000 Environmental costs of fossil fuels—a rapid assessment method with application to six cities. Environment department papers; no. 78. Pollution management series. Washington, D.C : The World bank. http://documents.worldbank.org/curated/en/2000/10/1977243/environmental-costs-fossil-fuels-rapid-assessment-method-application-six-cities
  48. Maji KJ, Dikshit AK, Deshpande A (2016) Human health risk assessment due to air pollution in ten urban cities in Maharashtra. India Cogent Environ Sci. doi: 10.1080/23311843.2016.1193110 Google Scholar
  49. Malik PS, Raina V (2015) Lung cancer: prevalent trends & emerging concepts. Indian J Med Res 141:5–7CrossRefGoogle Scholar
  50. Mahapatra PS, Panda S, Walvekar PP, Kumar R, Das T, Gurjar BR (2014) Seasonal trends, meteorological impacts, and associated health risks with atmospheric concentrations of gaseous pollutants at an Indian coastal city. Environ Sci Pollut Res Int 21:11418–11432. doi: 10.1007/s11356-014-3078-2 CrossRefGoogle Scholar
  51. Martuzzi, M., Mitis, F., Iavarone, I., Serinelli, M., 2006. Health impact of PM10 and ozone in 13 Italian cities. World Health Organization, Europe, Denmark [Available at: http://www.euro.who.int/__data/assets/pdf_file/0012/91110/E88700.pdf]
  52. Matus K, Nam K, Selin NE, Lamsal LN, Reilly JM, Paltsev S (2012) Health damages from air pollution in China. Glob Environ Chang 22:55–66. doi: 10.1016/j.gloenvcha.2011.08.006 CrossRefGoogle Scholar
  53. Milligan C, Kopp A, Dahdah S, Montufar J (2014) Value of a statistical life in road safety: a benefit-transfer function with risk-analysis guidance based on developing country data. Accid Anal Prev 71:236–247. doi: 10.1016/j.aap.2014.05.026 CrossRefGoogle Scholar
  54. Muller NZ, Mendelsohn R (2007) Measuring the damages of air pollution in the United States. J Environ Econ Manage 54:1–14. doi: 10.1016/j.jeem.2006.12.002 CrossRefGoogle Scholar
  55. MVD 2013 Road transport sector in Maharashtra state at a glance. Motor vehicles department [Available at: http://mahatranscom.in/pdf/MVD%20Statistics%20-%202012-13.pdf]
  56. Nam K-M, Selin NE, Reilly JM, Paltsev S (2010) Measuring welfare loss caused by air pollution in Europe: A CGE analysis. Energy Policy 38:5059–5071. doi: 10.1016/j.enpol.2010.04.034
  57. Navrud S (2007) Practical tools for value transfer in Denmark: guidelines and an example. Danish environmental protection agency (available at: http://www2.mst.dk/udgiv/publications/2007/978-87-7052-656-2/pdf/978-87-7052-657-9.pdf)
  58. NCE (2013) Better growth better climate—the new climate economy report: the global report (Chapter 2). New climate economy, Washington, DC, USA [Available at: https://www.unilever.com/Images/better-growth-better-climate-new-climate-economy-global-report-september-2014_tcm244-425167_en.pdf]
  59. NCP (2006) Population projections for India and states 2001–2026. Report of the technical group on population projections constituted. National commission on population, New Delhi, India [Available at: https://nrhm-mis.nic.in/Part%20B%20Demographic%20and%20Vital%20Indicators/Population%20Projection%20Report%202006%20by%20RGI.pdf]
  60. Nema P, Goyal SK (2010) Estimation of health impacts due to PM10 in major Indian cities (Chapter 11) Air pollution: health and environmental Impacts, CRC Press – Taylor & Francis Group (2010), pp 297–310Google Scholar
  61. OECD 2014 The cost of air pollution health impacts of road transport. Organization for Economic Co-operation and Development doi:  10.1787/9789264210448-en [Available at: http://www.oecd.org/env/the-cost-of-air-pollution-9789264210448-en.htm]
  62. Ostro B (2004) Outdoor air pollution: assessing the environmental burden of disease at national and local levels, Environmental burden of disease series, No. 5. World Health Organization, Protection of the human environment, Geneva [Available at: http://www.who.int/quantifying_ehimpacts/publications/ebd5.pdf]
  63. Ostro B, Roth L, Malig B, Marty M (2009) The effects of fine particle components on respiratory hospital admissions in children. Environ Health Perspect 117:475–480. doi: 10.1289/ehp.11848
  64. Pace GT (2005) Examination of the multiplier used to estimate PM2.5 fugitive dust emissions from PM10. US environmental protection agency [Available at: http://www3.epa.gov/ttnchie1/conference/ei14/session5/pace.pdf]
  65. Pascal M, Corso M, Chanel O, Declercq C, Badaloni C, Cesaroni G, Henschel S, Meister K, Haluza D, Martin-Olmedo P, Medina S (2013) Assessing the public health impacts of urban air pollution in 25 European cities: results of the Aphekom project. Sci Total Environ 449:390–400. doi: 10.1016/j.scitotenv.2013.01.077 CrossRefGoogle Scholar
  66. Patankar AM, Trivedi PL (2011) Monetary burden of health impacts of air pollution in Mumbai, India: implications for public health policy. Public Health 125:157–164. doi: 10.1016/j.puhe.2010.11.009
  67. Peng C, Wu X, Liu G, Johnson T, Shah J, Guttikunda S (2002) Urban air quality and health in China. Urban Stud 39:2283–2299. doi: 10.1080/0042098022000033872 CrossRefGoogle Scholar
  68. Pérez L, Sunyer J, Künzli N (2009) Estimating the health and economic benefits associated with reducing air pollution in the Barcelona metropolitan area (Spain). Gac Sanit 23:287–294. doi: 10.1016/j.gaceta.2008.07.002 CrossRefGoogle Scholar
  69. Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141CrossRefGoogle Scholar
  70. Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ (2004) Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71–77. doi: 10.1161/01.CIR.0000108927.80044.7F CrossRefGoogle Scholar
  71. Pope CA, Burnett RT, Turner MC, Cohen A, Krewski D, Jerrett M, Gapstur SM, Thun MJ (2011) Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships. Environ Health Perspect 119:1616–1621. doi: 10.1289/ehp.1103639 CrossRefGoogle Scholar
  72. Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742. doi: 10.1080/10473289.2006.10464485 CrossRefGoogle Scholar
  73. Pope CA, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE, Heath CW (1995) Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am. J. Respir. Crit. Care Med 151:669–674. doi: 10.1164/ajrccm/151.3_Pt_1.669 Google Scholar
  74. Quah E, Boon TL (2003) The economic cost of particulate air pollution on health in Singapore. J Asian Econ 14:73–90. doi: 10.1016/S1049-0078(02)00240-3 CrossRefGoogle Scholar
  75. Ray S, Khillare PS, Kim K-H, Brown RJC (2012) Distribution, sources, and Association of Polycyclic Aromatic Hydrocarbons, black carbon, and total organic carbon in size-segregated soil samples along a background-urban-rural transect. Environ Eng Sci 29:1008–1019. doi: 10.1089/ees.2011.0323 CrossRefGoogle Scholar
  76. Sager L (2016) Estimating the effect of air pollution on road safety using atmospheric temperature inversions. Grantham research institute on climate change and the environment, working paper No. 251. (Available at: http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2016/10/Working_paper_251_Sager_Oct2016.pdf)
  77. Sahu SK, Beig G, Parkhi NS (2011) Emissions inventory of anthropogenic PM2.5 and PM10 in Delhi during commonwealth games 2010. Atmos Environ 45:6180–6190. doi: 10.1016/j.atmosenv.2011.08.014 CrossRefGoogle Scholar
  78. Salomon JA, Haagsma JA, Davis A, de Noordhout CM, Polinder S, Havelaar AH, Cassini A, Devleesschauwer B, Kretzschmar M, Speybroeck N, Murray CJL, Vos T (2015) Disability weights for the global burden of disease 2013 study. Lancet Glob Heal 3:e712–e723. doi: 10.1016/S2214-109X(15)00069-8 CrossRefGoogle Scholar
  79. Satsangi PG, Kulshrestha A, Taneja A, Rao PSP (2011) Measurements of PM10 and PM2.5 aerosols in Agra, a semi-arid region of India. Indian J. Radio Sp. Phys 40:203–210Google Scholar
  80. Sharma M, Maloo S (2005) Assessment of ambient air PM and PM and characterization of PM in the city of Kanpur. India Atmos Environ 39:6015–6026. doi: 10.1016/j.atmosenv.2005.04.041 CrossRefGoogle Scholar
  81. Subramanian M (2016) New Delhi car ban yields trove of pollution data. Nature 530:266–267. doi: 10.1038/530266a CrossRefGoogle Scholar
  82. Tang D, Wang C, Nie J, Chen R, Niu Q, Kan H, Chen B, Perera F (2014) Health benefits of improving air quality in Taiyuan. China Environ Int 73:235–242. doi: 10.1016/j.envint.2014.07.016 CrossRefGoogle Scholar
  83. UN 2005 Integrating economic and environmental policies: the case of pacific island countries by United Nations 2005, United Nations publicationsGoogle Scholar
  84. UN (2014) Urban and rural populations. Population division, world urbanization prospects, the 2014 revision. Department of economic and social affairs, united nation [Available at: http://esa.un.org/unpd/wup/CD-ROM/]
  85. Vlachokostas C, Achillas C, Moussiopoulos Ν, Kalogeropoulos K, Sigalas G, Kalognomou E-A, Banias G (2010) Health effects and social costs of particulate and photochemical urban air pollution: a case study for Thessaloniki. Greece Air Qual Atmos Heal 5:325–334. doi: 10.1007/s11869-010-0096-1 CrossRefGoogle Scholar
  86. Voorhees AS, Wang J, Wang C, Zhao B, Wang S, Kan H (2014) Public health benefits of reducing air pollution in Shanghai: a proof-of-concept methodology with application to BenMAP. Sci Total Environ 485-486:396–405. doi: 10.1016/j.scitotenv.2014.03.113 CrossRefGoogle Scholar
  87. WB (2013) India diagnostic assessment of select environmental challenges an analysis of physical and monetary losses of environmental health and natural resources, Volume I, Report No. 70004-IN. The World Bank [Available at: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2013/07/16/000442464_20130716091943/Rendered/PDF/700040v10ESW0P0box0374379B00PUBLIC0.pdf]
  88. WB (2016a) GDP per capita (constant 2005 US$). The World Bank [Available at: http://data.worldbank.org/indicator/NY.GDP.PCAP.KD]
  89. WB (2016b) GDP at market prices (constant 2005 US$). The World Bank [Available at: http://data.worldbank.org/indicator/NY.GDP.MKTP.KD]
  90. WHO (2000) Air quality guidelines for Europe, 2nd Edition. world health organization regional office for Europe copenhagen, European series no. 91 [Available at: http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf]
  91. WHO (2005) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, Global update 2005: Summary of risk assessment. World Health Organization [Available at: http://apps.who.int/iris/bitstream/10665/69477/1/WHO_SDE_PHE_OEH_06.02_eng.pdf]
  92. WHO, 2008. Burden of disease associated with urban outdoor air pollution for 2008. World Health Organization, Geneva, Switzerland. (Available at: http://www.who.int/phe/health_topics/outdoorair/databases/OAP_BoD_2011_.pdf?ua=1)
  93. WHO, 2011. World health statistics 2011. World Health Organization, Geneva, Switzerland. (Avalable at: http://www.who.int/whosis/whostat/EN_WHS2011_Full.pdf?ua=1)
  94. WHO (2014a) Burden of disease from household air pollution for 2012. World Health Organization, Geneva, Switzerland. (Available at: http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf?ua=1)
  95. WHO (2016a) Global Health Observatory (GHO) data: mortality from ambient air pollution—situation and trend. World Health Organization [Available at http://www.who.int/gho/phe/outdoor_air_pollution/burden/en/]
  96. WHO (2014b) Media centre: 7 million premature deaths annually linked to air pollution. Geneva: World Health Organization [Available at: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/]
  97. WHO-OECD (2015) Economic cost of the health impact of air pollution in Europe: clean air, health and wealth. World Health Organization regional office for Europe-Copenhagen. Organization for Economic Co-operation and Development [Available at: http://www.euro.who.int/__data/assets/pdf_file/0004/276772/Economic-cost-health-impact-air-pollution-en.pdf]
  98. WHO (2015) Air pollution costs European economies US$ 1.6 trillion a year in diseases and deaths, new WHO study says. World Health Organization, Copenhagen and Haifa [Available at: http://www.euro.who.int/en/media-centre/sections/press-releases/2015/04/air-pollution-costs-european-economies-us$-1.6-trillion-a-year-in-diseases-and-deaths,-new-who-study-says]
  99. Zanobetti A, Bind M-AC, Schwartz J (2008) Particulate air pollution and survival in a COPD cohort. Environ Health 7:48. doi: 10.1186/1476-069X-7-48 CrossRefGoogle Scholar
  100. Zhang M, Song Y, Cai X (2007) A health-based assessment of particulate air pollution in urban areas of Beijing in 2000–2004. Sci Total Environ 376:100–108. doi: 10.1016/j.scitotenv.2007.01.085 CrossRefGoogle Scholar
  101. Zhang M, Song Y, Cai X, Zhou J (2008) Economic assessment of the health effects related to particulate matter pollution in 111 Chinese cities by using economic burden of disease analysis. J Environ Manag 88:947–954. doi: 10.1016/j.jenvman.2007.04.019 CrossRefGoogle Scholar
  102. Zhang Y-H, Chen C-H, Chen G-H, Song G-X, Chen B-H, Fu Q-Y, Kan H-D (2006) Application of DALYs in measuring health effect of ambient air pollution: a case study in Shanghai. China Biomed Environ Sci 19:268–272Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kamal Jyoti Maji
    • 1
  • Anil Kumar Dikshit
    • 1
  • Ashok Deshpande
    • 2
  1. 1.Center for Environmental Science and Engineering (CESE)Indian Institute of Technology BombayMumbaiIndia
  2. 2.Berkeley Initiative in Soft Computing (BISC)–Special Interest Group (SIG)–Environment Management Systems (EMS)BerkeleyUSA

Personalised recommendations